We consider the construction of the positive cone [7] by the method of averaging, which makes it possible to determine oscillatory modes in a many-frequency system with a polynomial nonlinearity and to construct curves dividing identical behavior of the trajectories. The starting point is the set of results given in [1-6].

1. Transformation of the Equations of Motion. We consider an autonomous system describing a certain oscillation process

\[\dot{x} = A x + \mu X(x), \quad (\cdot) = \frac{d}{dt}. \]

where \(x(t) \in \mathbb{R}^{2n} \) for all \(t \in \mathbb{R} \), \(A \) is a \(2n \times 2n \) constant matrix, \(1 > \mu > 0 \) is a small parameter, \(X(x): \mathbb{R}^{2n} \rightarrow \mathbb{R}^{2n} \) is a vector polynomial of integer powers first order and higher. Suppose that the eigenvalues of the matrix of the linear system corresponding to (1.1) are complex conjugates

\[\lambda_j, \bar{\lambda}_j = \text{Re} \lambda_j \pm i \text{Im} \lambda_j, \quad (j = 1, \ldots, n). \]

The conditions for which the variables of (1.1) can be separated into fast and slow variables are known (see [1], Sec. 163): \(| \text{Re} \lambda_k | < < | \text{Im} \lambda_k | \), \((j, k = 1, \ldots, n) \). We write (1.1) in the form

\[x = A_1 x + \mu [A_2 x + \Xi(x)]. \]

where \(A_1 \) and \(A_2 \) are \(2n \times 2n \) constant matrices and \(\Xi(x) \) is a vector polynomial containing terms second order and higher. The unperturbed form of (1.3) has the matrix \(A = A_1 \). Suppose that the roots of the matrix \(A_1 \) are imaginary and \(X(x) = A_2 + \Xi(x) \).

With the help of the nondegenerate linear transformation for (1.3)

\[y_j = \sum_{k=1}^{2n} a_{jk} x_k, \quad \bar{y}_j = \sum_{k=1}^{2n} \beta_{jk} x_k, \quad x_k = \sum_{(j)} a_{kj} y_j + \bar{a}_{kj} \bar{y}_j, \]

where \(a_{jk}, \beta_{jk}, \bar{a}_{kj}, \bar{\beta}_{jk} \) are constants, (1.1) is brought to diagonal form

\[\dot{y}_j = y_j - \mu \bar{y}_j, \quad \bar{\dot{y}}_j = \bar{\lambda}_j y_j + \mu \bar{y}_j, \quad (j = 1, \ldots, n) \]

where \(Y_j = \sum_{(k)} \beta_{ik} X_k(y, \bar{y}), \quad Y_j = \sum_{(k)} \bar{\beta}_{ik} X_k(y, \bar{y}); X_k(y, \bar{y}) \) is a vector function in which the vector \(x \) is expressed in terms of \(y \) and \(\bar{y} \).
In (1.4) we transform to the variables ρ, θ following [8], p. 96.

\begin{align}
\rho_j &= \gamma_j e^{-i\theta_j}, \quad \gamma_j e^{i\theta_j}, \quad (j = \overline{1,n})
\end{align}

In terms of ρ, θ the equations of motion transform to

\begin{align}
\dot{\rho} &= \mu m(\theta) X(\rho, \theta), \quad \rho \dot{\theta} = \text{Im} \Lambda \rho + \mu k(\theta) X(\rho, \theta),
\end{align}

where $\text{Im} \Lambda$ is an $n \times n$ diagonal matrix and $m(\theta)$ and $k(\theta)$ are $n \times 2n$ matrices with elements

\begin{align}
m_{j0} &= \text{Re} \beta_j \cos \theta_j + \text{Im} \beta_j \sin \theta_j, \quad k_{j0} = \text{Im} \gamma_j \cos \theta_j - \text{Re} \gamma_j \sin \theta_j.
\end{align}

$X(\rho, \theta)$ is a vector function in which X is expressed through ρ, θ as

\begin{align}
x_k &= 2 \sum_{\nu=1}^{n} \rho_{\nu} \left(\text{Re} \alpha_{\nu k} \cos \theta_{\nu} - \text{Im} \alpha_{\nu k} \sin \theta_{\nu} \right) \quad (k = \overline{1,2n}).
\end{align}

Note that in (1.6) the variables ρ are identified with the vector of slow variables and θ with the vector of fast variables. The components of ρ can be expressed in terms of x and θ as

\begin{align}
\rho_j &= \left(\sum_{k=1}^{2n} \text{Re} \beta_{jk} x_k \right) \cos \theta_j + \left(\sum_{k=1}^{2n} \text{Im} \beta_{jk} x_k \right) \sin \theta_j \quad (j = \overline{1,n}).
\end{align}

We represent (1.6) in the form

\begin{align}
\dot{\rho} &= \mu R(\rho, \theta), \quad \dot{\theta} = \text{Im} \Lambda \rho + \mu \Theta(\rho, \theta)
\end{align}

and assume the initial conditions

\begin{align}
\rho(0) = \langle \rho(0) \rangle = \rho_0, \quad \Theta(0) = \langle \Theta(0) \rangle = \theta_0.
\end{align}

Here

\begin{align}
R(\rho, \theta) &= \left(R_1(\rho, \theta), \ldots, R_n(\rho, \theta) \right), \quad \Theta(\rho, \theta) = \left(\Theta_1(\rho, \theta), \ldots, \Theta_n(\rho, \theta) \right),
\end{align}

\begin{align}
R_j(\rho, \theta) &= \sum_{k=1}^{2n} m_{jk}(\theta) X_k(\rho, \theta), \quad \Theta_j(\rho, \theta) = \sum_{k=1}^{2n} k_{jk}(\theta) X_k(\rho, \theta) / \rho_j \quad (j = \overline{1,n}).
\end{align}