AVERAGING IN A SYSTEM WITH SEVERAL LIMIT CYCLES

N. V. Nikitina

We consider the construction of the positive cone [7] by the method of averaging, which makes it possible to determine oscillatory modes in a many-frequency system with a polynomial nonlinearity and to construct curves dividing identical behavior of the trajectories. The starting point is the set of results given in [1-6].

1. Transformation of the Equations of Motion. We consider an autonomous system describing a certain oscillation process

\[\dot{x} = Ax + \mu X(x), \quad (\cdot) = \frac{d}{dt}, \]

where \(x(t) \in \mathbb{R}^{2n} \) for all \(t \in \mathbb{R} \), \(A \) is a \(2n \times 2n \) constant matrix, \(1 > \mu > 0 \) is a small parameter, \(X(x) : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \) is a vector polynomial of integer powers first order and higher. Suppose that the eigenvalues of the matrix of the linear system corresponding to (1.1) are complex conjugates

\[\lambda_j, \bar{\lambda}_j = \Re \lambda_j, \pm \Im \lambda_j \quad (j = \overline{1, n}). \]

The conditions for which the variables of (1.1) can be separated into fast and slow variables are known (see [1], Sec. 163): \(|\Re \lambda_k| < < |\Im \lambda_k| \), \(k, k = 1, \ldots, n \). We write (1.1) in the form

\[x = A_1 x + \mu [A_2 x + \Xi(x)]. \]

where \(A_1 \) and \(A_2 \) are \(2n \times 2n \) constant matrices and \(\Xi(x) \) is a vector polynomial containing terms second order and higher. The unperturbed form of (1.3) has the matrix \(A = A_1 \). Suppose that the roots of the matrix \(A_1 \) are imaginary and \(X(x) = A_2 + \Xi(x)\).

With the help of the nondegenerate linear transformation for (1.3)

\[y_j = \sum_{k=1}^{2n} a_{jk} x_k, \quad \bar{y}_j = \sum_{k=1}^{2n} b_{jk} x_k, \quad x_k = \sum_{(j)} (a_{kj} y_j + \bar{a}_{kj} \bar{y}_j), \]

where \(a_{kj}, b_{jk}, \bar{a}_{kj}, \bar{b}_{jk} \) are constants, (1.1) is brought to diagonal form

\[\dot{y}_j = \dot{\bar{y}}_j = \mu y_j + \bar{y}_j, \quad \bar{\dot{y}}_j = \bar{\dot{y}}_j = \mu \bar{y}_j + \mu \bar{y}_j, \quad (j = \overline{1, n}) \]

where \(Y_j = \sum_{(k)} \beta_{ik} X_k(y, \bar{y}), Y_j = \sum_{(k)} \bar{\beta}_{ik} X_k(y, \bar{y}); X_k(y, \bar{y}) \) is a vector function in which the vector \(x \) is expressed in terms of \(y \) and \(\bar{y} \).
In (1.4) we transform to the variables ρ, θ following [8], p. 96.

$$\rho_j = \gamma_j e^{-\tau_j}, \quad \rho_j = \gamma_j e^{i\theta_j}, \quad (j = 1, n).$$ \hspace{1cm} \text{(1.5)}$$

In terms of ρ, θ the equations of motion transform to

$$\dot{\rho} = \mu m(\theta) X(\rho, \theta), \quad \dot{\theta} = \text{Im} \Lambda \rho + \mu k(\theta) X(\rho, \theta).$$ \hspace{1cm} \text{(1.6)}$$

where $\text{Im} \Lambda$ is an $n \times n$ diagonal matrix and $m(\theta)$ and $k(\theta)$ are $n \times 2n$ matrices with elements

$$m_{j0} = \text{Re} \beta j_0 \cos \theta_j + \text{Im} \beta j_0 \sin \theta_j; \quad k_{j0} = \text{Im} \beta j_0 \cos \theta_j - \text{Re} \beta j_0 \sin \theta_j;$$

$X(\rho, \theta)$ is a vector function in which X is expressed through ρ, θ as

$$x_k = 2 \sum_{o=1}^{n} \rho_o (\text{Re} \alpha_{k0} \cos \theta_o - \text{Im} \alpha_{k0} \sin \theta_o) \quad (k = 1, 2n).$$ \hspace{1cm} \text{(1.7)}$$

Note that in (1.6) the variables ρ are identified with the vector of slow variables and θ with the vector of fast variables. The components of ρ can be expressed in terms of x and θ as

$$\rho_j = (\sum_{k=1}^{2n} \text{Re} \beta_{jk} x_k) \cos \theta_j + (\sum_{k=1}^{2n} \text{Im} \beta_{jk} x_k) \sin \theta_j \quad (j = 1, n).$$ \hspace{1cm} \text{(1.8)}$$

We represent (1.6) in the form

$$\dot{\rho} = \mu R(\rho, \theta), \quad \dot{\theta} = \text{Im} \lambda + \mu \Theta(\rho, \theta)$$ \hspace{1cm} \text{(1.9)}$$

and assume the initial conditions

$$\rho(0) = \langle \rho(0) \rangle = \rho_u, \quad \theta(0) = \langle \theta(0) \rangle = \theta_u.$$

Here

$$R(\rho, \theta) = (R_1(\rho, \theta), ..., R_n(\rho, \theta)), \quad \Theta(\rho, \theta) = (\Theta_1(\rho, \theta), ..., \Theta_2(\rho, \theta)).$$

$$R_j(\rho, \theta) = \sum_{k=1}^{2n} m_{jk}(\theta) X_k(\rho, \theta), \quad \Theta_j(\rho, \theta) = \sum_{k=1}^{2n} k_{jk}(\theta) X_k(\rho, \theta) / \rho_j \quad (j = 1, n).$$ \hspace{1cm} \text{(1.10)}$$