COMPLETE ANALYSIS OF THE AA'BB' NMR-^H SPECTRUM
OF 1, 1, 1, 3-TETRACHLOROPROPANE BY METHODS OF
HETERO- AND HOMONUCLEAR DOUBLE RESONANCE

B. A. Englin, T. A. Onishehenko,
Yu. V. Belov, V. I. Dostovalova,
I. K. Shmyrev, and U. Utebaev

In a study of the stereochemistry of the telomerization of vinyl chlorides with polyhalomethanes by
conformational NMR analysis of the telomer homologs CCl_3(CH_2CHCl)_n X (where X = Cl, Br, H, n = 1-3),
the possibility of evaluating the conformational state of nonsymmetrical long-chain aliphatic hydrocarbons
according to individual molecular fragments was discovered. One of the fragments most widespread in
the investigated polyhaloalkane molecules is the fragment R_2CClCH_2CH_2Cl, a complete analysis of the pro-
ton spectrum of which (with 1, 1, 1, 3-tetrachloropropane as an example) is cited in the present communica-
tion.

This spectrum (Fig. 1) contains two groups of 11 lines, symmetrical with respect to the center, and
belongs to the type AA'BB', characteristic [2-5] of 1, 2-disubstituted ethanes.† An analysis of such spectra
is associated with definite difficulties [5-12], and an unambiguous solution is possible only using supplementary experimental methods [6-8]. Thus, in [6] a method of direct evaluation of all the parameters of the spectrum AA'BB' according to the data for several working frequencies of the spectrometer was proposed. The authors of [7] conducted a primary assignment of the lines by the INDO method. In [8], reliable values for the geminal constants in 1, 2-chlorobromoethane were successfully obtained by a consideration of two-quantum transitions. We used selective deuteration, variation of the working frequency, and double resonance — observation of the Overhauser effect by the INDO method and uncoupling of the ^H-nuclei from spin-spin interaction with the deuteron.

METHOD

T_1\(^H\) was synthesized by telomerization of vinyl chloride with chloroform according to the method of
[13]; 1, 1, 1, 3-tetrachloro-3-d_1-propane (T_1D) was synthesized by telomerization of \(\alpha\)-d_1-vinyl chloride with
CHCl_3. The deuterio-analog T_1D had bp 41° (0.2 mm) and nD 1.4814. Found: C 20.10; D + H 2.43; Cl 77.24%.
CCl_3CH_2CDCl. Calculated: C 19.69; H + D 2.73; Cl 77.58%. \(\alpha\)-T_1-Vinyl chloride was produced in three
steps:

\[
PBr_3 + D_2O \rightarrow DBr \quad \rightarrow \quad CH_2BrCDCl_2 \quad \rightarrow \quad CH_2=CDCl
\]

* According to the nomenclature of [1], molecules that do not have any elements of symmetry other than
the trivial axis C_1 are called nonsymmetrical or asymmetrical.
† In conformational NMR analysis, 1, 1, 1, 3-tetrachloropropane (T_1\(^H\)) can be considered as a 1, 2-disub-
stituted ethane, since the magnetically inactive group CCl_3 possesses symmetry C_3v, and rotation around
the C_1-C_2 bonds does not change the shielding constant of the neighboring protons or the conformational
composition of the remainder of the molecule.

Institute of Heteroorganic Compounds, Academy of Sciences of the USSR. Translated from Izvestiya
July 7, 1972.

© 1975 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.
Fig. 1. NMR-1H spectra and INDO of 1,1,1,3-tetrachloropropane at the frequency 60 MHz (50 vol. % in benzene): a) INDO experiments; b) NMR-1H experiments. Calculation of the spectrum by the method of [9] was performed according to the indicated intervals (the roots \(E_1 - E_4 \) of \(E_2 \) 8.184 in [5]).

The addition of DBr to vinylidene chloride was performed, in contrast to [14],* at 80° in sealed glass ampoules with a volume of 50 ml with 0.02 g benzoyl peroxide, 40 g \(\text{C}_2\text{H}_2\text{Cl}_2 \), and 25 g DBr (mole ratio \([\text{DBr}]/[\text{C}_2\text{H}_2\text{Cl}_2] = 0.75\). Before the experiment the monomer was redistilled in a stream of dry purified argon. Each reagent, after introduction into the ampoule, was treated twice with a cycle of freezing-evaporation-thawing. In 3 h, an adduct containing < 1% high-boiling impurities was obtained with a quantitative yield and 97% conversion of DBr. After washing with a 5% solution of \(\text{Na}_2\text{CO}_3 \), with water, and drying, the fraction with \(\text{bp} \) 135-136°, \(d^2_2 \) 1.7650 and \(n^2_2 \) 1.5125 was distilled off. The NMR-1H spectrum of \(\text{CH}_2\text{BrCDCl}_2 \) contained a triplet with splitting \(J_{\text{HD}} \sim 0.9 \text{ Hz} \) in the region of absorption of the protons of the \(\text{CH}_2\text{Br} \) group at 3.86 ppm (\(J_{\text{HD}} \sim 6.5 \text{ Hz} \)).

The method of dehalogenation did not differ from that described in [14, 15]. The yield of \(\alpha-\text{d}_4\)-vinyl chloride at this stage was 89 or 70% of the initial \(\text{D}_2\text{O} \), the content of \(\text{CH}_2=\text{CHCl} \sim 4\% \) (Fig. 2), with isotopic purity of \(\text{D}_2\text{O} \sim 97\% \). All the parameters determined from the spectrum of the deutero-analog: \(\Delta \nu_{\text{AB}} = 5.0; J_{\text{AB}} = 1.4; J_{\text{AC}} = J_{\text{AD}} = 6.51 = 7.2; J_{\text{BC}} = J_{\text{BD}} = 6.51 = 15.1 \text{ Hz} \), practically coincided with the data of [16] of a calculation of the spectrum of vinyl chloride in the ABC approximation (5.4, 1.5, 6.8, and 14.8 Hz, respectively).

The NMR-1H spectra of \(\text{T}_1\text{H} \) and \(\text{T}_1\text{D} \) were taken at the frequency 90 MHz (34°, Bruker HX-90 spectrometer) and 60 MHz (34°, Hitachi-Perkin-Elmer R-20 spectrometer). The ampoules with the substance to

* The authors of [14] initiated the addition of DBr to \(\text{CH}_2=\text{CCl}_2 \) with UV irradiation. After 18 h at 25°, the yield of the adduct was 62% (bp 134-135°, \(n^2_1 \) 1.5054).