EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER IN THE ANNULAR CHANNEL OF A CIRCULATION LOOP

S. N. Kanev and V. V. Ris

The results of an experimental investigation of heat transfer in the vertical annular channel of a closed circulation heat exchanger are given.

The design of closed circulation heat exchangers necessitates calculation of the mean heat-transfer coefficients for a viscous gravitational single-phase flow of working fluid in channels of different configurations. One of the possible practical forms of the compact heat-receiving part of a circulation loop is a vertical annular channel.

There are a fair number of studies of convective heat transfer in annular tubes, but the effect of free convection is considered in only a few of them. This case is most thoroughly investigated in [1-3].

In [1, 2] the heat transfer of the inner tube of the annular channel was investigated, and in [3] that of the outer tube was investigated. In [2, 3] there was an attempt to investigate the effect of the channel geometry on heat transfer. In the present paper we investigate the heat transfer of the outer heated wall of an annular slot to the fluid flowing through it and the effect of the channel geometry on the heat transfer.

The experimental apparatus, shown schematically in Fig. 1, was a closed circulation loop consisting of a vertical annular channel, cooler, and connecting system. This type of heat-exchanger loop is similar to the freezing columns used in hydraulic structures, where the working medium is a cheap organic fluid such as kerosene. In the experimental apparatus discussed here we used distilled water. The fluid was heated in the annular gap, entered the cooler, where it was cooled, and then returned to the heated section. At the inlet and outlet of the annular channel there were grid-type mixers.

The investigated channel was formed by two coaxial vertical tubes. The outer was of galvanized steel and was 0.1 m in diameter and 1.5 m high. The inner tube was a Viniplast cylinder, whose diameter could be varied to give different channel geometries.

The outer tube of the annular slot was heated from outside by four electric heaters made of Nichrome wire uniformly wound onto the tube over glass and asbestos cloth. Heat loss was reduced by enclosing the heater in fire clay. Each of the heaters had an independent supply and regulation system, which allowed the obtaining of a heat flux of the required profile. The supply and regulation system of each of the heaters consisted of an ac source, a voltage regulator, a regulating transformer, and a stepdown transformer.

The connecting line between the heated region and the cooler was made of 1-in. zinc-plated steel tubes and had a window for visualization of the flow.

The cooler was a countercurrent tube-in-tube 1-m-long heat exchanger. Its inner tube formed part of the connecting system, and the outer tube was made of steel and was 0.15 m in diameter. The coolant was water from the communal main supply, which was driven through the heat exchanger by a centrifugal pump. Its flow was regulated by a valve and was monitored by a measuring tank. At the inlet and outlet of the two cooler channels there were diffusion grids and screw-type mixers.

The flow of fluid through the investigated channel was measured by two methods: from the heat balance of the cooler and by a thermal flowmeter constructed and calibrated in the Lensovet Leningrad Technological Institute.
Fig. 1. Diagram of experimental apparatus: 1) annular channel; 2) cooler; 3) connecting line; 4) mixers; 5) thermal flowmeter; 6) heaters; 7) heat insulation; 8) voltage regulator; 9) autotransformer; 10) stepdown transformer; 11) centrifugal pump; 12) regulating valve; 13) measuring tank; 14) heat probe.

The temperature of the fluid in the annular gap was measured by a heat probe, which could be moved transversely and along the channel axis. The wall temperature of the heated outer tube was measured by 20 Chromel–Alumel thermocouples welded on and built-in to minimize heat transfer from the junction and site of contact with the wall through the thermoelectrodes.

To measure the local heat fluxes we used laminated heat-flux sensors constructed in the Institute of Technical Thermophysics, Academy of Sciences of the Ukrainian SSR (ITT). The sensors were calibrated, after they were embedded in the heated wall, on the ITT calibration station. The emfs of all the thermocouples were recorded by an R-306 potentiometer with an M-195/1 galvanometer, and the signals of the heat-flow gauges were recorded by an R-307 potentiometer with an M-195/3 galvanometer.

The results of the experimental investigation are given below. We consider only the case of constant temperature of the outer wall of the annular channel. The total amount of heat Q carried by the fluid from the heated section was determined from the flow of liquid and from the difference in its heat content at the inlet and outlet. Knowing Q, the area of the heat-transfer surface $F = \pi d_2 h$, and $\Delta T = T_w - T_0$, we determine the mean heat-transfer coefficient over the height of the channel:

$$\alpha = \frac{Q}{F \Delta T} = \frac{q}{T_w - T_0}.$$ \hspace{1cm} (1)

The local heat-transfer coefficients are calculated in the following way:

$$\alpha = \frac{q}{T_w - T_0}.$$ \hspace{1cm} (2)

Here q is the heat flux in the particular section of the channel, determined from the reading of the heat-flux gauge. Integrating the values of the local heat-transfer coefficients over the length of the channel, we obtain the averaged value. The difference between the values of the mean heat-transfer coefficients calculated by the two methods did not exceed 10%. For concentric annular channels the dimensionless heat-transfer coefficient is a function of the Reynolds number, Grashof number, Prandtl number, K, and the reduced tube length. As a characteristic dimension in the convective heat-transfer criteria we use the equivalent slot diameter. The physical constants in them are taken for a mean liquid temperature $T_m = 0.5(T_0 + T_h)$.

The experimental data for the heat transfer from the heated outer wall of the annular channel to the flowing medium were correlated by the equation