COMMUTATIVE SUBALGEBRAS OF THREE FIRST-ORDER SYMMETRY OPERATORS AND SEPARATION OF VARIABLES IN THE WAVE EQUATION

V. G. Bagrov, B. F. Samsonov, A. V. Shapovalov, and I. V. Shirokov

The problem of complex separation of variables in the wave equation is considered in four-dimensional Minkowskii space-time. In contrast to the known series of researches by Kalnins and Miller (see Ref. Zh., Fiz., 2B9 (1978); 1B208 and 1B209 (1979), e.g.), underlying this research is a theorem on the necessary and sufficient conditions of total separation of variables in the non-parabolic V. N. Shapovalov equation (Differents. Uravn., 16, No. 10, 1864-1874 (1980)). Nonequivalent complete sets of three differential first-order symmetry operators are constructed, appropriate coordinate systems are found, and complete separation of variables is performed in the wave equation.

All nonequivalent commutative three-dimensional subalgebras of first-order symmetry operators of the wave equation are obtained in this paper and total separation of variables is performed by using them. Let us recall that, by definition, a symmetry operator transfers every solution of a given equation into a certain solution of this same equation.

The problem of separation of variables in (1) is studied in greatest detail in [1-5] in which the separation of variables is realized within the framework of the "step-by-step" principle. Namely, if (1) allows an operator of first-order symmetry A, then the variable u_1 in (1) is separated out in the appropriate coordinate system (u) where this operator can be reduced to the form $\partial/\partial u_1$, and (1) is reduced to a "shortened" equation with a smaller number of independent variables, where second-order symmetry operators are used for separation of variables or a repeated shortening is performed by using the first-order operator. The solution of (1) is represented in the form

$$q(u) = R(u) q_0(u_0) q_1(u_1) q_2(u_2) q_3(u_3)$$

in the privileged coordinate system (u_k) (where the variables in (1) are separated). Here $q_k(u_k)$, $k = 0, 1, 2, 3$ are functions dependent on one variable while the function $R(u)$ can depend on several variables u_k. Let us note that in certain cases the "shortened" equation, in the words of the authors of [3], is complex in form and the technique they used is not effective. In our opinion, these difficulties can be associated, in particular, with the fact that the function R depends on several coordinates u_k and several mutually simultaneously commutative first-order symmetry operators is required to find it. The difficulties mentioned do not occur in an approach based on the Shapovalov [6] theorem about the necessary and sufficient conditions for complete separation of variables in a second order nonparabolic equation that underlies our research. According to this theorem, every privileged coordinate system is defined by a complete set of pairwise commutative linearly independent differential symmetry

*All the variables x_i ($i = 0, 1, 2, 3$) are considered dimensionless. To go over to the dimensional x_i the transformation $x_i = \alpha x_i$ should be carried out everywhere, where α has the dimensionality of a reciprocal length.

448 0038-5697/90/3305-0448$12.50 © 1990 Plenum Publishing Corporation
operators of not higher than second order. Finding all the privileged coordinate systems of (1) reduces to finding all (nonequivalent) complete sets, where the necessity for a partial separation of variables and reduction of the problem to separation of variables in the "shortened" equation drops out.

Equation (1) is invariant with respect to the group K of conforal mappings of the Minkowskii space $R_{1,3}$. Generators of the group K form an algebra k and the spaces $R_{1,3}$ are written in the Cartesian (x^k) coordinate system in the form

$$P_\alpha = \frac{\partial}{\partial x^\alpha}; \quad L_{ij} = x_i P_j - x_j P_i; \quad D = (x \cdot P) + 1; \quad K = 2 x_i (x \cdot P) - (x \cdot x) P_i + 2 x_i.$$

Here $i, j, k = 0, 1, 2, 3$; $(x \cdot x) = x_i x^i$, $x_i = g_{ik} x^k$, $(g_{ik}) = \text{diag}(+1, -1, -1, -1)$ is the metric space $R_{1,3}$ in the Cartesian (x^k) coordinate system. In our previous paper [8], subalgebras are obtained with the nontrivial center of the algebra k as well as all nonequivalent (the definition of equivalence is given in [7]) two-dimensional commutative subalgebras of the algebra k with bases $\{A_0, A_1\}$. The set B_1, \ldots, B_r of elements of the algebra k that commute with the elements A_0, A_1 form a certain subalgebra of the algebra k that is also a subalgebra of one of the algebras presented in [8]. This subalgebra can be separated comparatively simply into orbits with respect to an associated representation of its groups (subgroups of the group that do not change A_0, A_1), whose representatives $A_{21}, A_{22}, \ldots, A_{2m}$ define the basis $\{A_0, A_1, A_{2k}\}$ of mutually nonequivalent three-dimensional commutative subalgebras of the algebra k. Performing an analogous operation with each of the two-dimensional commutative subalgebras listed in [8] and removing the nonequivalent triples $\{A_0, A_1, A_2\}$,

we obtain the desired nonequivalent three-dimensional commutative subalgebras with bases (4).

In conformity with (3), the elements $A_p, p = 0, 1, 2$ are scalar first-order differential operators of the form $A_p = a_p^i(x) P_i + a_p(x)$, where $a_p^i(x), a_p(x)$ are functions. From the viewpoint of the Shapovalov theorem [6], the set (4) is a complete set of the type of (3.n) of (1). Here the first digit indicates the number of first-order symmetry operators in the complete set, $n = 3$ is rank $(a_p^i a_p^q)$.

All the nonequivalent complete sets of first-order symmetry operators are represented in Table 1. The sets are divided into two groups: sets consisting of generators of Poincare subgroups of the group K (1-7), and sets not reducing to one are just generators of this subgroup by any transformations from the group K (8-13). The sets of the first group are distributed over the types (3.0), (3.1). Sets of the type (3.0) are divided into stationary and nonstationary. In the former case the operator $A_0 = P_0$ that results in extraction of the time variable x^0 in (1) and reduces it to a Helmholtz equation in three-dimensional space. The sets 1-7 result in separation of variables in the Klein-Gordon equation that was examined in [9]. There are eight nonequivalent sets of type (3.0), (3.1) for the Klein-Gordon equation. In addition to the sets 1-7 in [9], the following is still presented $A_0 = (P_0 + P_3)/2$; $A_1 = L_{01} + L_{31} + t P_2$; $A_2 = L_{20} + L_{21} + t P_2 + t P_3$; $t, \tau = \text{const}$. Since the group K of the wave equation (1) is broader than the group of the Klein-Gordon equation (the Poincare equation is one such), this set turns out to be equivalent to the set 7 with respect to K (see Table 1). The sets 8-13 are among the type (3.0). Because of the equivalence of the operators L_{03}, D and $P_0 - K_0$, the sets 4-9 result in separation of variables in the equations [1, 3]

$$(M^2 - K^2) \varphi = -\sigma (\sigma + 2) \varphi; \quad M^2 = L_{12}^2 + L_{13}^2 + L_{23}^2; \quad K^2 = L_{31}^2 + L_{32}^2 + L_{30}^2;$$

that is obtained from the wave equation (1) by extraction of a variable associated with the operator D.

The sets 4-9 result in separation of variables in the equations in the Euler-Poisson-Darboux equation obtained from the wave equation (1) after extraction of the variable associated with the operator L_{12}. The sets 2, 8-12 result in separation of variables in the free Schrödinger equation in three-dimensional space-time, which is obtained from (1) after extraction of the variable associated with the operator $P_0 + P_3$. The sets 1 and 2 possess this same property if they are written in the equivalent form $P_0 + P_3, P_0 - P_3, P_0 + P_3, P - P_3, L_{12}$. The set 13 is missing in [10]. Therefore, still another set corresponding to this set, at least, should be appended to the 17 coordinate systems presented in [10].

449