REACTION OF α, ω-DIOODO- AND α, β-DICHLORO-ω-IODOPERFLUOROALKANES WITH SOME AROMATIC COMPOUNDS

I. L. Knunyants, V. V. Shokina, UDC 542.91 + 547.412 + 547.52/.59
P. M. Krasuskaya, and S. P. Khrlakyan

When ω-iodo-α, β-dichloroperfluoroalkanes were reacted with benzene we obtained the corresponding dichloroperfluoroalkylbenzenes [1].

$$
(CF_2)_n CFCI + NCI \rightarrow (CF_2)_n CFCI - CF_2Cl
$$

In the present paper it was shown that the heating of benzene with α, ω-diiodoperfluoroalkanes, like 1,2-diiodoperfluoroethane and 1,6-diiodoperfluorohexane, leads to the respective formation of 1,2-diphenylperfluoroethane and 1,6-diphenylperfluorohexane.

The alkylation of benzene with 1,2-diiodoperfluoroethane gave, besides 1,2-diphenylperfluoroethane, 1-hydro-2-phenylperfluoroethane, perfluorocyclobutane and a small amount of 1,2-dihydroperfluoroethane. The formation of perfluorocyclobutane is apparently explained by the thermal instability of 1,2-diiodoperfluoroethane.

In contrast to 1,2-diiodoperfluoroethane and 1,6-diiodoperfluorohexane, 1,4-diiodoperfluorobutane reacts with benzene to form 1,1,2,2,3,3,4,4-octafluorotetralin, the structure of which was confirmed by its defluorination with iron turnings at 500°C to give 1,2,3,4-tetrafluoronaphthalene* [2, 3].

The alkylation of naphthalene and bromobenzene with α, ω-diiodoperfluoroalkanes and 1,2-dichloro-4-iodoperfluorobutane goes in a similar manner.

The infrared spectrum of the alkylation product of bromobenzene with 1,2-dichloro-4-iodoperfluorobutane the most intense absorption bands were detected at 703, 731 and 781 cm$^{-1}$, of which the bands at 703 and 781 cm$^{-1}$ correspond to the m-substituted isomer, while the band at 731 cm$^{-1}$ can belong to the o-substituted isomer, and the band at 809 cm$^{-1}$, of medium intensity, can correspond to the p-substituted isomer [4].

*We were granted Author's Certificate a form of Russian Patent No. 170,932 for the method of preparing 1,2,3,4-tetrafluoronaphthalene.

The consecutive alkylation of diphenyl ether with 1,2-dichloro-8-iodoperfluorooctane gave the mono- and disubstituted diphenyl ethers. The dechlorination of 1,2-dichloro-8-phenoxyphenylperfluorooctane with zinc in acetic acid gave the corresponding olefin.

![Chemical structure](image)

The alkylation of diphenyl ether with 1,6-diiodoperfluorohexane gave 1,6-bis(phenoxyphenyl)perfluorohexane.

![Chemical structure](image)

EXPERIMENTAL

Reaction of Benzene with 1,2-Diiodoperfluoroethane. Into a steel ampule were charged 106.2 g of 1,2-diodoperfluoroethane, 100 ml of benzene and 78 g of sodium acetate. With shaking, the ampule was heated for 8 h at 250°. Then the ampule was cooled and 7.2 g of a low-boiling liquid was collected in a trap, the composition of which, based on the gas-liquid chromatographic (GLC) data, corresponded to 3% of 1,2-dihydroperfluoroethane and 97% of perfluorocyclobutane (11.6% yield when based on 1,2-diiodoperfluoroethane). The ampule contents were washed with sodium hyposulfite solution, then with water, and dried over MgSO₄. After distilling off the benzene we obtained: a) 12.6 g (23.59%) of 1-hydroxy-2-phenylperfluoroethane, bp 69-70° (60 mm), nD₂⁰ 1.4240; d₄₂⁰ 1.2900. Found %: C 52.98; H 3.30; F 42.57; MR 35.21. C₉H₆F₄. Calculated %: C 53.93; H 3.37; F 42.70; MR 35.55 (AR F = 1.1). From the data given in [5, 6]: bp 68° (60 mm); nD₂⁰ 1.4258; d₄₂⁰ 1.27, and b) 19 g (24.9%) of 1,2-diphenylperfluoroethane, mp 124-125° (from ethanol). From the data given in [7]: mp 122°.

1,6-Diphenylperfluorohexane. In a similar manner, from 28 g of 1,6-diiodoperfluorohexane, 80 ml of benzene and 20 g of sodium acetate we obtained 7.5 g (33%) of 1,6-diphenylperfluorohexane, bp 172-173° (15 mm); nD₂⁰ 1.4360; d₄₂⁰ 1.507. Found %: C 47.19; H 2.17; F 51.02; MR 78.77. C₁₈H₁₀F₁₂. Calculated %: C 47.58; H 2.20; F 50.22; MR 79.12.

1,1,2,2,3,3,4,4-Octafluorotetralin. In a similar manner, from 45.4 g of 1,4-diiodoperfluorobutane, 100 ml of benzene and 40 g of sodium acetate we obtained 29 g (72.5%) of 1,1,2,2,3,3,4,4-octafluorotetralin, bp 90° (42 mm); nD₂⁰ 1.4030; d₄₂⁰ 1.516. Found %: C 43.52; H 1.72; F 55.05; MR 44.43; mol. wt. 281. C₁₈H₁₀F₂₄. Calculated %: C 43.50; H 1.45; F 55.05; MR 43.72; mol. wt. 276.

1,2,3,4-Tetrafluoronaphthalene. Through a quartz tube, with a length of 40 cm and a diameter of 7 mm, filled with iron turnings, at 500°, were passed the vapors of 1,1,2,2,3,3,4,4-octafluorotetralin. At the other end of the tube, the liquid and crystals were condensed in a cooled receiver. The liquid was again passed through the tube filled with iron turnings. The crystals were sublimed and then recrystallized from ethyl alcohol. The 1,2,3,4-tetrafluoronaphthalene had mp 106-108°. From [2, 3]: mp 110-111°. Found %: C 60.38; H 2.00; F 38.18. C₁₈H₁₄F₄. Calculated %: C 60.00; H 2.00; F 38.00.

1,2-Dinaphthylperfluoroethane. Into a 250-ml steel autoclave were charged 51.2 g of naphthalene, 71 g of 1,2-diiodoperfluoroethane and 54 g of sodium acetate. With shaking, the autoclave was heated for 8 h at 250°. The reaction mixture was dissolved in a mixture of ether and chloroform, washed with sodium hyposulfite solution, then with water, and dried over MgSO₄. After distilling off the solvents and the unreacted naphthalene (~12 g) we obtained 15 g of a liquid, bp 98-139° (5 mm), and 13 g of a very viscous mass, bp 200-223° (0.01 mm). Redistillation of the first liquid failed to give any pure compounds; the viscous mass crystallized. After washing the material with petroleum ether and recrystallization from dioxane we obtained 7.2 g of 1,2-dinaphthylperfluoroethane (10% yield), mp 188-189°. Found %: C 74.56; H 4.04; F 21.33. C₂₂H₂₄F₄. Calculated %: C 74.58; H 3.95; F 21.47.