CLASSIFICATION OF THE INVARIANT SOLUTIONS TO THE EQUATIONS FOR THE TWO-DIMENSIONAL TRANSIENT-STATE FLOW OF A GAS

N. Kh. Ibragimov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 7, No. 4, pp. 19-22, 1966

Here one considers all invariant solutions to the system of equations for two-dimensional gas dynamics:

\[\frac{\partial v}{\partial t} + (v \cdot \nabla) v + \frac{1}{\rho} \text{grad} p = 0, \]

\[\frac{\partial \rho}{\partial t} + (v \cdot \text{grad} \rho) + \rho \text{div} v = 0, \]

\[\frac{\partial \rho}{\partial t} + (v \cdot \text{grad} \rho) + \Delta \text{div} v = 0, \]

\[\left(A = A(\rho, \rho) \equiv -\rho \frac{\partial S}{\partial \rho} \right). \]

Here \(p \) is pressure, \(\rho \) is density, \(S \) is entropy, and \(v = v(x,y) \) is the velocity vector, whose components are \(u \) and \(v \); it is assumed that \(\partial S/\partial \rho \neq 0 \). Two cases will be considered.

Case A: \(A(\rho, \rho) \) an arbitrary function.

Case B: \(A = \gamma p \), a polytropic gas with \(\gamma = \text{constant} \).

The principal group of transformations allowed by (1) has been given [1], and for case A the basis of the corresponding Lie algebra consists of the operators

\[X_1 = \frac{\partial}{\partial t}, \quad X_4 = t \frac{\partial}{\partial x} + \frac{\partial}{\partial u}, \quad X_5 = t \frac{\partial}{\partial \rho} + \frac{\partial}{\partial \rho}, \]

\[X_2 = \frac{\partial}{\partial x}, \quad X_6 = t \frac{\partial}{\partial x} + x \frac{\partial}{\partial \rho} + y \frac{\partial}{\partial \rho}, \]

\[X_3 = \frac{\partial}{\partial y}, \quad X_7 = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial \rho} + v \frac{\partial}{\partial u} - u \frac{\partial}{\partial \rho}. \]

while in case B we add to these the operators

\[X_8 = t \frac{\partial}{\partial t} - u \frac{\partial}{\partial u} + v \frac{\partial}{\partial \rho} + 2p \frac{\partial}{\partial \rho}, \]

\[X_9 = \rho \frac{\partial}{\partial \rho} + p \frac{\partial}{\partial \rho}. \]

For \(\gamma = 2 \) we add to (2) and (3) the operator

\[X_{10} = t^2 \frac{\partial}{\partial t} + t x \frac{\partial}{\partial x} + t y \frac{\partial}{\partial y} + (x - tu) \frac{\partial}{\partial u} + (y - tv) \frac{\partial}{\partial v} - 4tp \frac{\partial}{\partial \rho} + 2tp \frac{\partial}{\partial \rho}. \]

The basic group for case A is denoted by \(G_7 \), while for case B it is denoted by \(G_9 \) for arbitrary \(\gamma \) and by \(G_{10} \) for \(\gamma = 2 \).

Table 1 gives the optimal system of one-parameter subgroups of group \(G_7 \).

The optimal system of one-parameter subgroups of group \(G_7 \) consists of operators 1-12 of Table 1 and the operators

\[X_{1} + X_{4} + X_{7} + 2X_{9} + X_{10}, \]

\[X_{1} + \alpha X_{4} + \beta X_{7} + \delta X_{9} + X_{10}. \]

(5)

The basic group for case A is denoted by \(G_7 \), while for case B it is denoted by \(G_9 \) for arbitrary \(\gamma \) and by \(G_{10} \) for \(\gamma = 2 \).

Table 2 gives the optimal system of two-parameter subgroups of group \(G_7 \); Table 4 does the same for group \(G_9 \) and subgroups 1-40 of Tables 3 and 4 do the same for group \(G_{10} \).

The form of the invariant solutions of rank unity is as follows. These solutions are derived from the two-parameter subgroups, \(U, V, P, \) and \(R \) are dependent on a single argument \(\lambda \), whose expressions in terms of \(t, x, \) and \(y \) vary with the subgroup and are given below. The necessary condition for an invariant solution is not obeyed for subgroups in which operator \(X_9 \) is one of the forming elements; moreover, the \(X_9 \) term in all subgroups affects only \(p \) and \(\rho \), and this effect is easily allowed for, so \(X_9 \) will not be considered. Also, \(I \) do not consider subgroups in which as one of the forming elements we have \(X_1, X_2, X_3, X_4, \) or \(X_5 \), since these give the stationary and one-dimensional case. For instance, the invariant solution for \(H = (X_6) \) takes the form

\[u = U(t, x), \quad v = \frac{y}{t} + V(t, x), \]

\[p = \frac{1}{t} P(t, x), \quad \rho = \frac{1}{t} R(t, x). \]

Then the \(H \) of system (1) is

\[V_t + UV_x + tV = 0, \quad U_t + UU_x + R'P_x = 0, \]

\[R_t + UR_x + RU_x = 0, \quad P_t + UP_x + A'U_x = 0 \]

with a known function \(U(t, x) \), so we have to deal with the solution of equations for one-dimensional motion.

For the subgroups of Table 2 we get invariant solutions of the form

\[u = U, \quad u_x = V, \quad p = P, \quad \rho = R, \quad \lambda = \frac{t}{4} \].
Here r and \(\varphi \) are polar coordinates in the \((x, y)\) plane, while \(u_r \) and \(u_\varphi \) are the projections of the velocity on the axes of the polar coordinates.

For Table 3 we have

\[3. \ u = \frac{r^\beta}{1 + \beta^2} \ (U - iV + \lambda t), \]

\[\lambda = \frac{t \varphi + \beta}{1 + \beta^2}, \]

\[v = x + \frac{r^\beta}{1 + \beta^2} \bigl[V + iU - \lambda t (t^2 + 2) \bigr], \]

\[p = \frac{P}{1 + \beta^2}, \quad P = \frac{e^{-\varphi(t)} R}{(1 + t^2)^2}, \]

\[\lambda = \frac{(x - y) e^{-\varphi(t)}}{1 + \beta^2}. \]

4. \(u = \frac{U - iV - 1/2 \beta \partial}{1 + \beta^2}, \)

\[\lambda = \frac{(x - y) e^{-\varphi(t)}}{2}, \]

\[\gamma = \frac{U - iV - 1/2 \beta \partial}{1 + \beta^2}, \]

\[\lambda = \frac{e^{-\varphi(t)} R}{1 + \beta^2}. \]

6. To avoid complicating the formulas we consider the case \(\alpha = \beta = 0; \)

\[u_r = \frac{r t}{1 + \beta^2} + \frac{U}{r}, \quad u_\varphi = \frac{V}{r}, \quad p = \frac{P}{1 + \beta^2}, \quad \rho = \frac{R}{1 + \beta^2}. \]

\[\lambda = \frac{r}{V + 1 + \beta^2}. \]

7. Here also we assume \(\alpha = \beta = 0; \)

\[u_r = \frac{r t}{1 + \beta^2} + \frac{r U}{1 + \beta^2}, \quad u_\varphi = \frac{r V}{1 + \beta^2}, \quad p = \frac{P}{1 + \beta^2}, \quad \rho = \frac{R}{1 + \beta^2}. \]

\[\lambda = \frac{r}{V + 1 + \beta^2}. \]

Table 3

<table>
<thead>
<tr>
<th>(X_1 + X_0)</th>
<th>(a X_1 + X_1)</th>
<th>(X_1 + \alpha X_7 + X_7)</th>
<th>(X_1 + X_0)</th>
<th>(X_1 + \alpha X_7 + X_7)</th>
<th>(X_1 + X_0)</th>
<th>(X_1 + X_2 + X_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha X_1 + X_0)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_0)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_0)</td>
</tr>
<tr>
<td>(a X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(a X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(a X_1 + X_1)</td>
</tr>
<tr>
<td>(a X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(a X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(a X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
<tr>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\beta X_1 + X_1)</td>
<td>(\alpha X_1 + X_1)</td>
</tr>
</tbody>
</table>