In a continuation of papers [1, 2] on the preparation and investigation of derivatives of (3)-1,2-dicarbaundecaborate a series of ketones and carboxylic acids, their esters, amides, and nitriles was synthesized in this research containing the 1-(3)-1,2-dicarbaundecaborate substituent and some of their properties were studied.

These compounds were obtained by cleavage of the corresponding derivatives of o-carborane with piperidine [3] in benzene solution and were isolated as the tetramethylammonium salts.

\[
\text{RC} = \text{CR'} + \text{C}_6\text{H}_{10} \text{NH} \xrightarrow{1. \text{C}_6\text{H}_{10} \text{N} \text{O}} \text{RC} = \text{CR'} \\quad \text{B}_9\text{H}_{10} \text{N(C}_6\text{H}_{10})
\]

\[
1. \text{C}_6\text{H}_{10} \text{N} \text{O} \quad \text{B}_9\text{H}_{10} \text{N(C}_6\text{H}_{10}) \quad 2. \text{C}_6\text{H}_{10} \text{N} \text{O} \quad \text{B}_9\text{H}_{10} \text{N(C}_6\text{H}_{10})
\]

\[
\begin{align*}
R = \text{H}, & \quad R' = \text{COOH} \quad \text{(Ia)}; \\
R = \text{CH}_3, & \quad R' = \text{COOCH}_3 \quad \text{(IIa, b)}; \\
R = \text{CH}_3, & \quad R' = \text{CONH}_2 \quad \text{(IV);} \\
R = \text{Cl}, & \quad R' = \text{COOCH}_3 \quad \text{(IIIb);} \\
R = \text{CH}_3, & \quad R' = \text{CN} \quad \text{(V)};
\end{align*}
\]

Compound (V) was obtained by cleavage of 1-methyl-2-cyano-o-carborane with methanol at 20° [4]. Compound (VI) was obtained by the method of [2] by reaction of NaCN and N,N,N,N-trimethylammoniummethyl-(3)-1,2-dicarbaundecaborate.

The structure of the compounds was confirmed by IR spectra (Table 1). In IR spectra of all compounds where the CO or CN group is bonded directly to a (3)-1,2-dicarbaundecaborate grouping a shift of their absorption band to the longwave region is observed, in comparison with the absorption band of the corresponding compound of the carborane series [4-6], which is explained by a difference in electronic effects of the 1-o-carborane and 1-(3)-1,2-dicarbaundecaborate substituent.

It should be noted that alcoholic base cannot be used for cleavage of the indicated derivatives of o-carborane, since cleavage of the C-R bond between the o-carborane ring and the carbonyl group occurs primarily in this case. Even in an attempt to obtain the dicarbaundecaborate secondary alcohol by cleavage of 1-(methyl-o-carboranyl)-2-methyl-1-propanol (VII) under the effect of alcoholic KOH cleavage of the C-C bond between the carborane ring and C atom with the hydroxy group and cleavage of the 1-methyl-o-carborane formed in this case to methyl-(3)-1,2-dicarbaundecaborate occurred initially.

It was shown earlier [7, 8] that the 1-(3)-1,2-dicarbaundecaborate group shows a strong electron-donor effect both by an induction mechanism ($\sigma_L^+ 0.20$) and by a conjugation mechanism ($\sigma_L^0 0.17$). Results obtained in this research on the study of properties of the synthesized derivatives of (3)-1,2-dicarbaundecaborate are in good agreement with these data. The pK_a of acids (Ia)-(Ic) were determined by the method of potentiometric titration in 50% ethanol and 80% methylcellulose. The obtained data are presented in Table 2. Dicarbaundecaborate-carboxylic acids are very strong acids due to the strong electron-donating effect of the 1-(3)-1,2-dicarbaundecaborate group, in contrast to carboranecarboxylic acids. They are much weaker than C$_6$H$_5$COOH [7] and are similar in pK_a to ferrocenecarboxylic acid [9] and p-nitrophenol [10].

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.
TABLE 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>R²</th>
<th>Found, %</th>
<th>Empirical formula</th>
<th>Calc., %</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ia)</td>
<td>H</td>
<td>COOH</td>
<td>38.50</td>
<td>9.59</td>
<td>C₂H₅B₆N₄O₅</td>
<td>38.50</td>
</tr>
<tr>
<td>(Ib)</td>
<td>H</td>
<td>CH₃COOH</td>
<td>38.50</td>
<td>9.64</td>
<td>C₂H₅B₆N₄O₅</td>
<td>38.50</td>
</tr>
<tr>
<td>(Ic)</td>
<td>CH₃</td>
<td>COOH</td>
<td>38.50</td>
<td>9.56</td>
<td>C₂H₅B₆N₄O₅</td>
<td>38.50</td>
</tr>
<tr>
<td>(IIa)</td>
<td>CH₃</td>
<td>CH₃COOH</td>
<td>38.50</td>
<td>9.56</td>
<td>C₂H₅B₆N₄O₅</td>
<td>38.50</td>
</tr>
<tr>
<td>(IIb)</td>
<td>CH₃</td>
<td>CH₃COCH₃</td>
<td>38.50</td>
<td>9.56</td>
<td>C₂H₅B₆N₄O₅</td>
<td>38.50</td>
</tr>
<tr>
<td>(IIc)</td>
<td>CH₃</td>
<td>CH₃CN</td>
<td>38.50</td>
<td>9.56</td>
<td>C₂H₅B₆N₄O₅</td>
<td>38.50</td>
</tr>
<tr>
<td>(IIId)</td>
<td>CH₃</td>
<td>CN</td>
<td>38.50</td>
<td>9.56</td>
<td>C₂H₅B₆N₄O₅</td>
<td>38.50</td>
</tr>
</tbody>
</table>

* Tetraethylammonium salt.

TABLE 2

<table>
<thead>
<tr>
<th>Formula</th>
<th>pKₐ</th>
<th>90% methanol</th>
<th>50% methanol</th>
<th>90% methylcellosolve</th>
<th>50% ethanol</th>
<th>90% methylcellosolve</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC=CCOOH</td>
<td>7,13</td>
<td>8,97</td>
<td>2,50</td>
<td>6,96</td>
<td>7,66</td>
<td></td>
</tr>
<tr>
<td>Bu₃H₁₀⁺N(CH₃)₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₃C=CCOOH</td>
<td>7,31</td>
<td>9,10</td>
<td>2,60</td>
<td>8,08</td>
<td>7,56</td>
<td></td>
</tr>
<tr>
<td>Bu₃H₁₀⁺N(CH₃)₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC=CCH₂COOH</td>
<td>8,92</td>
<td>8,38</td>
<td>4,23</td>
<td>6,20</td>
<td>7,89</td>
<td></td>
</tr>
<tr>
<td>Bu₃H₁₀⁺N(CH₃)₄</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acids (Ia)-(Ic) are monosalts of dibasic acids containing two acidic groups: carboxyl and nido-(3)-1,2-dicarbaundecaborate. Since the acidity of nido-(3)-1,2-C₃B₆H₁₂ dicarbaundecaborane (pKₐ 2.95 in 33% methanol) is four orders of magnitude higher than the acidity of the carboxyl group [11], acids (Ia)-(Ic) are ammonium salts of (3)-1,2-C₃B₆H₁₂, which is seen from their IR spectra.

The induction constant of 1-(3)-1,2-C₃B₆H₁₂ is 0.26 was calculated using the pKₐ value of acid (Ib) in 80% methylcellosolve by the method of [12]. This value is close to the value 0.20 calculated by the Taft method [7, 8].

In contrast to o-carboranecarboxylic esters [5], ketones [4], and secondary alcohols [4], which upon reaction with alcoholic base easily undergo cleavage of the C-C bond between the o-carborane ring and the organic substituent, the corresponding derivatives of (3)-1,2-dicarbaundecaborate were stable to the effect of alcoholic KOH even under rigid conditions. This result agrees with the character of the electronic effect of the 1-(3)-1,2-dicarbaundecaborate group, and also shows that formation of an anionic center at the carbon atom of (3)-1,2-dicarbaundecaborate is extremely inconvenient.

Transformation of the CO group to CH₂ group with formation of the benzyl derivative (VIII) can occur upon reaction of ketone (IIa) with excess LiAlH₄ in THF solution.

\[
\begin{align*}
\text{CH₃C–CCOOH} & \xrightarrow{\text{LiAlH₄}} \text{CH₃C–CCH₂COOH} \\
\text{Bu₃H₁₀⁺N(CH₃)₄} & \text{Bu₃H₁₀⁺N(CH₃)₄} \\
\text{CH₃C–CCH₂COOH} & \xrightarrow{-\text{OH}^-} \text{CH₃C–CCOOH} \\
\text{Bu₃H₁₀⁺N(CH₃)₄} & \text{Bu₃H₁₀⁺N(CH₃)₄} \\
\end{align*}
\]

(VIII)

A mixture of phenyl(methyldicarbaundecarboranyl)carbinol (IX) and benzyl derivative (VIII) in a 2:3 ratio is obtained already 15 min after the start of reaction. Reduction of the ketone to compound (VIII) occurs even at -30°C. At -30°C after 15 min the reaction solution is a mixture of initial ketone, compounds (IX), and (VIII) in a 2.1:1.7:1 ratio, which indicates the similarity of rates of reduction of the keto group of ketone (IIia) to the alcohol