Derivation and Validation of Initial-Value Methods for Boundary-Value Problems for Difference Equations

MICHAEL A. GOLBERG

Communicated by R. E. Kalaba

Abstract. In this paper, we develop the theory of invariant imbedding for general classes of two-point boundary-value problems for difference equations. In addition to deriving invariant imbedding equations, we show that the functions satisfying these equations in fact solve the original boundary-value problems.

1. Introduction

Recent work in discrete, optimal control theory (Ref. 1) has shown that many problems can be formulated as two-point boundary-value problems for difference equations. In this paper, using the theory of invariant imbedding (Ref. 2), we show how these boundary-value problems can be converted to initial-value ones.

Conversely, using methods previously developed for differential and integral equations (Refs. 3–4), we show that the solution of the initial-value problem satisfies the original boundary-value problem.

2. Boundary-Value Problem

Let V be a real-vector space. Let $f(t, x)$ be a function defined on Z^+xV to V, where $Z^+ = \{0, 1, 2, 3, \ldots\}$. We consider the boundary-value problem

\begin{align*}
u(t + 1) &= f(t, u(t)), \\
g(u(0)) + h(u(T)) &= v, \quad 0 \leq t < T, \quad T > 0,
\end{align*}

\begin{footnotesize}
Supplementary information:

1 Paper received October 13, 1970.
2 Lecturer, Department of Mathematics, University of Nevada, Las Vegas, Nevada.
\end{footnotesize}
where \(\varphi \in \mathcal{V}, (t, T) \in \mathbb{Z}^+, \) and \(g \) and \(h \) map \(\mathcal{V} \) into \(\mathcal{V} \). By varying \(T \) between \(1 \) and \(T' > 1 \), and varying \(\varphi \) in \(\mathcal{V} \), we imbed problem (1)-(2) into a family of similar problems. We make the assumption that each boundary-value problem has a unique solution. Since the solution to the initial-value problem for (1) exists and is unique for \(t \geq 0 \), the solution of the boundary-value problem can be continued to all of \(\mathbb{Z}^+ \). This solution will be denoted by \(u(t, T, \varphi) \) to emphasize its dependence on \(t \) and \(\varphi \). In fact, \(u(t, T, \varphi) \) is a function from \(\mathcal{Z}^+ \times [1, 2, ..., T'] \times \mathcal{V} \rightarrow \mathcal{V} \). For simplicity, we will assume that \(T = \infty \).

The method of invariant imbedding seeks to replace (1)-(2) by initial-value problems. For example, if we know the final value \(u(T, T, \varphi) \) of the solution to (1)-(2) and, in addition, if the backward Cauchy problem for (1) is uniquely solvable, then we can solve (1)-(2) by backward recursion. The problem now is to find \(u(T, T, \varphi) \). Using invariant imbedding, we set up a difference equation for \(R(T, \varphi) = u(T, T, \varphi) \). Under certain conditions on \(g \) and \(h \), we can determine a complete set of initial conditions for this equation. Once this is done, solving the original boundary-value problem is reduced to solving two initial-value problems.

We will also show how the knowledge of \(R(T, \varphi) \) can be used to give a single-sweep (Ref. 3) solution procedure for (1)-(2), analogous to the ones developed for differential equations in Refs. 3 and 5.

In the next section, we will carry out the above program under the condition that \(g + h \) has an inverse. When this condition is not satisfied, certain modifications in the previous argument need to be made. This will be done in Section 4.

3. Invariant Imbedding Equations—I

Theorem 3.1. (Derivation of the initial value method.) Let \(u(t, T, \varphi) \) be defined as in Section 2. Define \(R(T, \varphi) = u(T, T, \varphi) \). Assume that the backward Cauchy problem for (1) is uniquely solvable. If the equation \(u(T + 1, T + 1, \bar{v}) = u(T + 1, T, \varphi) \) can be solved uniquely for \(\bar{v} \), then the functions \(u(t, T, \varphi), R(T, \varphi) \) satisfy the difference equations

\[
\begin{align*}
 u(t, T + 1, \varphi + h(f(T, R(T, \varphi))) - h(R(T, \varphi))) &= u(t, T, \varphi), \quad 0 \leq t \leq T, \\
 u(t, t, \varphi) &= R(t, \varphi), \\
 R(T + 1, \varphi + h(f(T, R(T, \varphi))) - h(R(T, \varphi))) &= f(T, R(T, \varphi)).
\end{align*}
\]

In addition, if \(g + h \) has an inverse, then \(R(T, \varphi) \) has the initial value

\[
R(0, \varphi) = (g + h)^{-1}(\varphi).
\]