A System of Inequalities and Nondifferentiable Mathematical Programming

C. Singh

Communicated by G. Leitmann

Abstract. A system of inequalities involving nondifferentiable functions, originally introduced by Eisenberg, is extended. This result is then applied to establish optimality criteria and a dual theorem for a nondifferentiable mathematical program involving quasiconvexity in its equality constraints and inequality constraints. These are natural extensions of results recently established by Mond.

Key Words. Positive-semidefinite symmetric matrices, optimality, duality, quasiconvexity.

1. Introduction

The purpose of this paper is to generalize or extend results of Eisenberg (Ref. 1) and Mond (Ref. 2). For a given vector \(\alpha \in \mathbb{R}^n \), a real \(m \times n \) matrix \(A \) and an \(n \times n \) real symmetric positive semidefinite matrix \(C \), Eisenberg defined

\[
K = \mathbb{R}^n \cap \{x : Ax \leq 0\}
\]

and

\[
f_0(x) = \alpha^T x + (x^T C x)^{1/2}
\]

for \(x \in \mathbb{R}^n \) and showed that

\[
f_0(x) \geq 0
\]

1 The author is grateful to Dr. D. J. Fleming, St. Lawrence University, for helpful discussion.
2 Associate Professor, St. Lawrence University, Canton, New York.
3 To avoid confusion, we denote Eisenberg's \(f \) by \(f_0 \).
for all $x \in K$ iff there exist $z \in \mathbb{R}^n$, $\pi \in \mathbb{R}^m$ such that

$$A z \leq 0, \quad \pi \geq 0, \quad \pi^t A + \alpha^t + z^t C = 0, \quad z^t C z \leq 1.$$

Mond (Ref. 2) applied Eisenberg's result to the following nonlinear programming problem:

$$\text{minimize } F(x) = f(x) + (x^t B x)^{1/2}, \quad \text{subject to } g(x) \leq 0,$$

where f and g are differentiable functions from \mathbb{R}^n into \mathbb{R} and \mathbb{R}^m, respectively, and B is an $n \times n$ symmetric positive semidefinite matrix. He established a necessary optimality condition of Kuhn–Tucker type under a constraint qualification which was later shown by Mond and Schechter (Ref. 3) to be implied by the generalized Slater condition. Mond (Ref. 2) also proved a sufficient optimality theorem assuming that f is convex and g is concave. Finally, he defined the dual problem and established Wolfe's (Ref. 4) duality theorems and converse duality theorems under this set-up.

To extend Eisenberg's result, we define

$$K_0 = \mathbb{R}^n \cap \{x : Ax \leq 0, D x = 0\},$$

$$f_0(x) = \alpha^t x + (x^t C x)^{1/2},$$

where α and A are same as before, D is a $k \times n$ matrix, and C is an $n \times n$ symmetric positive semidefinite matrix. Under this set-up, in Section 2, we extend Eisenberg's Lemma 2 (Ref. 1) by introducing equalities via the matrix D.

In Section 3, we generalize Mond's (Ref. 2) optimality criteria by considering the following primal programming problem [Problem (P)]:

$$\text{minimize } F(x) = f(x) + (x^t C x)^{1/2}, \quad x \in K^*$$

where

$$K^* = \{x \in \mathbb{R}^n : g(x) \leq 0, h(x) = 0\},$$

and where f and g are the same as in Mond (Ref. 2) and h is a k-dimensional vector-valued function. For sufficiency, we relax Mond's convexity restriction on $-g$ to quasiconvexity and require h to be quasiconvex.

In Section 4, we define the dual problem and extend the Hanson–Hurad strict converse duality theorem by requiring h to be quasiconvex and not both quasiconvex and quasiconcave as in Ref. 4.

2. A System of Inequalities

Let K_0, A, D, C be as in Section 1. Let β be a fixed vector in \mathbb{R}^n. Then, we have the following theorem.