A note on the propagation of circular fronts into still water

By John R. Mvungi, Dept. of Mathematics, The University of Zimbabwe, Harare, Zimbabwe

1. Introduction

The one dimensional shallow water equations of Stoker [2] have been used extensively to study the propagation of plane disturbances up sloping beaches. Greenspan [3] obtained the solution for waves running up beaches of constant slope while Carrier and Greenspan [4] made an effort to discover a general criterion for wave breaking. The asymptotic theory of flow at the wavefront has been given by Bürger [5] to determine the point where the wave breaks. Jeffrey [6] established a general theory for the development and propagation of discontinuities in quasilinear hyperbolic systems of partial differential equations and successfully applied it to determine the position and the time at which a shock forms on the wavefront [7].

Recently, Gurtin [1] used a simple argument to find the condition for the breaking of finite amplitude water waves propagating into water at rest above a sloping beach of arbitrary shape. Jeffrey and Mvungi [8] generalized the method by Gurtin [1] to derive the amplitude of an acceleration wave propagating on the surface of water at rest in a vertical walled channel of arbitrary continuously varying width and depth. This same argument was extended by Jeffrey and Mvungi [9] to study the effect of submerged obstacles on water waves in a channel. It is the purpose of this paper to generalize the approach due to Gurtin [1] to obtain the explicit expression of the amplitude of circular fronts propagating into water at rest together with a criterion for the breaking or non breaking on such fronts.

2. Amplitude of circular fronts

We introduce cylindrical co-ordinates \(r, \phi \) and \(z \) such that the \(r, \phi \) axes lie on the equilibrium surface of the water with the \(z \)-axis pointing vertically upwards. Limiting the following to the propagation of dotting waves in shallow water, we start from the following quasilinear one dimensional equations

\[
\begin{align*}
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial r} + g \frac{\partial \eta}{\partial r} &= 0 \\
\frac{\partial \eta}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left[(\eta + h) ru \right] &= 0
\end{align*}
\]

where \(u(r, t), \eta(r, t) \) and \(g \) are respectively, the \(r \)-component of water velocity, the free surface elevation and the acceleration due to gravity.
We suppose that circular fronts move in the direction of increasing r and that the advancing front is at $r = r_0$ when $t = 0$. Like Gurtin [1] we assume that

(i) u and η are continuous, with $u(r, t) = \eta(r, t) = 0$ a head of the advancing wave. and (ii) the first and second derivatives of u and η suffer at most a jump discontinuity, so that the wave propagated on the surface is an acceleration front.

Using a superscript minus sign to denote the value of a function immediately behind the advancing wavefront we conclude from (i) that

$$u^- = \eta^- = 0. \quad (2.3)$$

Differentiation of (2.3) with respect to t leads to

$$u_t^- = - \frac{du}{dt} \quad \text{and} \quad \eta_t^- = - \frac{d\eta}{dt}. \quad (2.4)$$

The characteristic slopes associated with (2.1) and (2.2) are

$$\frac{dr}{dt} = \lambda^{(1)} = u + \sqrt{g(\eta + h)} \quad \text{and} \quad \lambda^{(2)} = u - \sqrt{g(\eta + h)}. \quad (2.5)$$

These are real and distinct whence the quasilinear system (2.1), (2.2) is strictly hyperbolic. Now $\lambda^{(1)}$ represents the advancing wavefront whence (2.4) and (2.5) combine to yield

$$u_t^- = - u^- \sqrt{gh(r)} \quad \text{and} \quad \eta_t^- = - \eta^- \sqrt{gh(r)}. \quad (2.6)$$

If we define the amplitude of the acceleration wave to be

$$a = \eta_r^- \neq 0 \quad (2.7)$$

then (2.6) becomes

$$u_t^- = - \frac{u^-}{u} \sqrt{gh(r)} \quad \text{and} \quad \eta_t^- = - a \sqrt{gh(r)}. \quad (2.8)$$

Now, immediately behind the wavefront (2.1) and (2.2) become

$$u_t^- + g \eta_r^- = 0 \quad \text{and} \quad \eta_t^- + h u_r = 0. \quad (2.9)$$

Equations (2.8) and (2.9) combine to yield

$$u_t^- = - g a \quad \text{and} \quad u_r^- = \frac{g a}{\sqrt{gh}}. \quad (2.10)$$

Differentiating (2.1) with respect to t and (2.2) with respect to r and eliminating η_{rr}, we obtain, behind the wavefront,

$$u_t^- - g hu_{rr}^+ + u_t^- u_r^- - 2 g u_r^- \eta_r^- - 2 g h \eta_r^- u_r^- - g h \frac{u_r^-}{r} = 0. \quad (2.11)$$

Using (2.10) in (2.11) leads to

$$u_t^- - g hu_{rr}^- - \frac{g^2 a}{\sqrt{gh}} \left[3 a + 2 h + \frac{h}{r} \right] = 0. \quad (2.12)$$