CONCLUSIONS

1. On the alumina–rhodium catalyst obtained by decomposition of [(CH₃)₂S]₃RhBr₃, hetero-
genized on Al₂O₃, reactions that are typical for platinum-group metals take place: C₂-dehydro-
cyclization, skeletal isomerization, dehydroisomerization, and others.

2. The catalytic, structural, and adsorption properties of the alumina–rhodium catalysts
that we have investigated are determined by their genesis.

LITERATURE CITED

2. B. A. Kazanskii, Research in the Field of Organic Catalysis [in Russian], Nauka, Moscow
(1977), pp. 57-95.
Nauk SSSR, 203, 103 (1972).
8. N. E. Bulyanova, A. P. Karnaukhov, N. G. Koroleva, N. T. Kulishkin, V. T. Rybak, and V. B.

CONVERSIONS OF ETHERS ON DEHYDRATING CATALYSTS.

4. KINETICS OF DISPROPORTIONATION REACTION

A. A. Silakova, N. V. Nekrasov,
and M. M. Kostyukovskii

In the present work, for an elucidation of the possible mechanism of disproportionation
of ethers, we carried out a study of the kinetic relationships of this reaction in the presence
of Al₂O₃ alone and Al₂O₃ treated with HCl (9.3%). We investigated the conversion of a mixture
of diethyl and dipropyl ethers to ethyl propyl ether,

\[
\text{Et}_2\text{O} + \text{Pr}_2\text{O} \rightleftharpoons 2\text{EtOPr}
\]

The kinetic experiments were performed at 200°C on Al₂O₃, and at 175°C, 185°C, and 200°C
on Al₂O₃–HCl.

EXPERIMENTAL

The reaction was carried out in a completely sealed flow-circulating unit at atmospheric
pressure; the original mixture was diluted with nitrogen. Cylinder nitrogen was purified by
passing successively through a column with nickel–chromium catalyst and a trap with zeolite,
chilled by a mixture of dry ice and acetone. The catalyst was regenerated in a stream of air
at 450°C. In all experiments, the catalyst charge was 4 cm³ (2.4 g), and the catalyst particle
size was 1-2 mm. The original mixture of ethers, from thermostated saturators, was passed
through the reactor, and the products were analyzed chromatographically every 10-15 min.
After establishing steady-state operation, the experiment was continued for 45-120 min, with
the activity remaining unchanged. The constancy of catalyst activity was checked in control

†For communication 3, see [1].
TABLE I. Kinetic Data on Disproportionation of Ethers on
Al₂O₃, with Various Initial Conditions, at 200°C

U₁	c₁	c₂	c₃	c₄	c₅	rₜ, mmol/	Degree	
----	----	----	----	----	----	(h⋅g cat)	dehydration, %	
liters/h	mmoles/liter	experiment	calculation					
3,16	1,07	1,10	0,94	0,25	0,74	0,36	0,43	21,4
5,26	0,97	0,20	0,87	0,25	0,74	0,36	0,43	11,8
10,52	1,01	0,12	0,94	0,25	0,74	0,36	0,43	9,1
15,79	1,03	0,08	1,00	0,25	0,74	0,36	0,43	5,4
21,05	1,06	0,06	1,05	0,25	0,74	0,36	0,43	1,8
5,13	0,55	0,54	0,47	0,15	0,34	0,38	0,40	22,2
10,26	0,50	0,10	0,36	0,15	0,34	0,38	0,40	24,1
15,39	0,51	0,08	0,41	0,15	0,34	0,38	0,40	16,7
20,53	0,51	0,08	0,41	0,15	0,34	0,38	0,40	13,0
10,40	0,51	0,08	0,41	0,15	0,34	0,38	0,40	1,0
20,79	0,53	0,04	0,39	0,15	0,34	0,38	0,40	0,0
10,40	0,04	1,10	0,40	0,15	0,34	0,38	0,40	16,4
20,79	1,09	0,55	1,06	0,07	0,46	0,58	0,54	9,1
5,10	0,23	0,54	0,22	0,11	0,35	0,28	0,34	18,5
10,40	1,20	0,25	1,35	0,07	0,49	0,33	0,35	8,0
10,40	0,29	1,36	0,26	0,05	1,17	0,24	0,21	12,5

DISCUSSION OF RESULTS

A test for possible influence of internal diffusion was performed by calculating the Weiss number [3] from the formula

\[W = \frac{r^* R^2}{3D^* C} \] \hspace{1cm} (I)

where \(r^* \) is the reaction rate, moles/cm³ catalyst·sec; \(R \) is the mean radius of a catalyst particle, cm; \(D^* \) is the effective diffusion coefficient, cm²/sec; \(C \) is the concentration of the original substance, moles/cm³. The value of \(D^* \) for Et₂O·Pr was taken as \(10^{-2} \) cm²/sec, corresponding to the extremal value of the effective diffusion coefficient for the system under consideration [4]. The value of the Weiss number calculated by the use of Eq. (I) was 0.08, i.e., \(W < 1 \), indicating that there is no internal-diffusion retardation under the conditions we have selected and that the reaction proceeds in the kinetic region.

The rate of accumulation of the mixed ether was calculated from the formula

\[r = UC_2/G \] \hspace{1cm} (II)

where \(U \) is the flow rate, liters/h; \(C_2 \) is the concentration of the mixed ether, mmoles/liter; \(G \) is the quantity of catalyst, g.

In order to account for the reverse reaction, we introduced a correction factor \(\gamma \) [5]. The value of the equilibrium constant, which is needed to calculate \(\gamma \), was assumed as unity [6]. In calculating the disproportionation rate, we took into account the occurrence of the ether dehydration reaction. According to [7], the rate of Pr₂O dehydration at 360°C is five times the rate of dehydration of Et₂O or EtOPr. On the basis of these data, it was considered that it is mainly the Pr₂O that is subject to dehydration. And in fact, as can be seen from Tables 1 and 2, the original concentration ratio Pr₂O/Et₂O in all cases was greater than the ratio of instantaneous concentrations of these substances. In order to determine the influence of the H₂O (formed by dehydration of the ethers) on the disproportionation reaction rate, we performed experiments in which water vapor was present (\(C = 0.27-1.10 \) mmoles/liter). It was established that the addition of water to the reaction mixture in an amount more than 10 times the maximum concentration of H₂O formed in the course of the experiments did not change the disproportionation rate.

A preliminary analysis of the experimental data showed that the dependence of the experiments under selected standard conditions. The original concentrations of Et₂O (\(C_1 \)) and Pr₂O (\(C_3 \)) were varied from 0.25 to 1.4 mmoles/liter. The feedstock space velocity was varied from 800 to 5260 h⁻¹. The highest rate of reactant feed was 20 liters/h, and the circulation rate was 500 liters/h, giving gradientless conditions [2].