The self-similar solutions to a fast diffusion equation

By Yuan-Wei Qi*, Dept of Mathematics, Hong Kong University of Science & Technology, Hong Kong, and School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

1. Introduction

In this paper we study in \mathbb{R}^n the equation

$$\Delta u^\alpha - \frac{x \cdot \nabla u}{2} + \mu u + u^\beta = 0, \quad (1)$$

where $0 < \alpha < 1$, $\beta > 1$ and $\mu > 0$ is a parameter. The equation arises from the study of blow-up self-similar solutions of the heat equation

$$\psi_t = \Delta \psi^\alpha + \psi^\beta. \quad (2)$$

In fact, let

$$\psi(y, t) = (T - t)^{-1/(\beta - 1)}(2m)^{1/(\beta - 1)}u(x), \quad (3)$$

where

$$m = \frac{\beta - \alpha}{2(\beta - 1)},$$

$$x = \frac{(2m)^m y}{(T - t)^m}. \quad (4)$$

Then it is easy to verify that u satisfies (1) with

$$f(u) = -\mu u + u^\beta, \quad \mu = \frac{1}{\beta - \alpha}.$$

The fast diffusion equation (2) arises from many applications in plasma physics and chemical engineering. In this paper we always assume that $f(u)$ takes the above form with $\mu > 0$ as a free parameter. The main purpose of our study is to establish the existence (non-existence) of positive ground state of (1) which, in the case $\mu = 1/(\beta - \alpha)$, plays a role of demonstrating

* Present address: Dept of Mathematics, Hong Kong University of Science & Technology, Hong Kong (Fax (852) 358 1643).
the power law of the heat conduction process of which (2) models. Then the result can be applied to characterize the local behaviour of solutions of (2) near a blow-up point (see [3], [4], [5], [8], [10] and [14]). In particular, we have the following result on the existence and non-existence of self-similar solutions of (2).

Theorem 1. Let $0 < \alpha < 1$ and $\beta > 2 - \alpha$.

(i) For $\beta/\alpha < \infty$ when $n = 1, 2$ or $\beta/\alpha < (n + 2)/(n - 2)$ when $n \geq 3$ there exists no non-constant positive radial symmetric self-similar solution of (2).

(ii) For $(n + 2)/(n - 2) < \beta/\alpha < \tilde{p}$ when $n \geq 3$ there exist an infinite number of positive radial symmetric self-similar solution of (2).

Here \tilde{p} is defined as

$$
\tilde{p} = \begin{cases}
\infty & n \leq 10 \\
\frac{(n - 2)^2 - 4n + 8\sqrt{n - 1}}{(n - 2)(n - 10)} & n > 10.
\end{cases}
$$

A direct consequence of the above theorem is the following result on characterizing local behaviour of solutions of (2) near a blow-up point.

Theorem 2. Let $0 < \alpha < 1$ and $\beta > 2 - \alpha$. Let $\beta/\alpha < \infty$ when $n = 1, 2$ or $\beta/\alpha < (n + 2)/(n - 2)$ when $n \geq 3$. Let $\phi(x, t)$ be a radially symmetric solution of (2) which blows up at point $x = 0$ with blow-up time $T > 0$. Then

$$
\lim_{t \to T} \phi(x, t)(T - t)^{1/(\beta - 1)} \to \left(\frac{1}{\beta - 1}\right)^{1/(\beta - 1)}
$$

uniformly for $|x| < C(T - t)^{\frac{1}{\beta - 1}}$.

Proof. It follows directly from Theorem 1 and an argument in [10].

For simplicity, we shall only consider radial solutions of (1). In this case we can write $u(x) = u(r)$, where $r = |x|$. Let $u^w(r) = w^{(\alpha - m)r}\alpha^{-(\beta - 1)}$, then

$$
w'' + \frac{n - 1}{r} w' - \left(\frac{r}{2} w' + \lambda w\right)w^q + w^p = 0,
$$

where $p = \frac{\beta}{\alpha}, q = \frac{1 - \alpha}{\alpha}$ and $\lambda = \alpha\mu$. The case corresponding to self-similar solution of (2) is

$$
\lambda = \frac{1}{p - 1} = \frac{\alpha}{\beta - \alpha}.
$$

Next we give a simple definition.