After quite involved but standard estimates the details of which we omit, using the assumptions of the theorem and Hölder's inequality (10) will hold for all \(r > 1 \) if we note that for any left quasicontinuous \((\mathcal{F}, \mathbb{P}) \)-local martingale \(\bar{L}_t, \ t > 0, \bar{L}_0 = 0 \) the process

\[
\bar{L}_t = \exp \left\{ r L_t - \frac{1}{2} r^2 \langle L^r \rangle_t - \int_0^t (e^{r s} - 1 - r s) \Pi^r (ds, dx) \right\}, \ t > 0,
\]

is a \((\bar{\mathcal{F}}, \mathbb{P}) \)supermartingale and \(\mathcal{E}_t \bar{L}^r (r) \leq 1, \ t > 0 \). The validity of the last assertion is easily verified by calculating the stochastic differential of the process \(\bar{L}(r) \). The theorem is proved.

LITERATURE CITED

DISTRIBUTION OF DISTANCE BETWEEN POINTS OF TWO CONGRUENT CONVEX DOMAINS

E. Gešiauskas

The goal of the paper is to express the distribution function of the distance in terms of the simplest integral.

THEOREM. The distribution function of the distance \(R \) between points of two congruent convex domains, moved apart parallel by the distance \(Z \), is equal to

\[
P (R \leq x) = 2F^{-1} \int [r \sigma (\varphi, \rho) - r^2] [1 - 2x R^{-2} \cos^2 \varphi]^p \sigma (\varphi, \rho) d\rho d\varphi,
\]

\(s \leq R \leq x, \ \sigma (\varphi, \rho) = (R \sin \varphi^* - \rho)/R \cos \varphi^*, \ \sigma_1 \leq \varphi^* \leq \sigma_2, \)

where \(R^2 = z^2 + r^2 + 2r \sin \varphi, \ r \) is the distance from the point \(P_2 \) to the image \(P_1 \) of the point \(P_1 \) in the domain \(K_2, \ \varphi \) is the direction of the perpendicular \(p \), dropped from the origin to the line \(G \), passing through the points \(P_1 \) and \(P_2 \), where \(\sigma (\varphi, \rho) \) is the length of the chord on the line \(G, \ \varphi^* \) is the direction of the perpendicular \(p^* \) to \(R \).

Proof. We take two congruent convex domains, moved apart by parallel translation by the distance \(z \). The distribution function of the distance between the points of these domains is equal to
\[P(R \leq x) = \mu(s \leq R \leq \infty | P_1, P_2) \mu(s \leq R \leq T | P_1, P_2) = \mu(s \leq R \leq x | P_1, P_2) / F^2 = \mu(x) / F^2, \]

where \(\mu \) is the measure of the set of pairs of points, \(s \) is the smallest distance, and \(T \) is the largest distance between points of the domains \(K_1 \) and \(K_2 \).

\[\mu(x) = 2 \int_{s \leq R \leq x} RdG^* d\varphi^* dR, \]

where \(dG^* \) is the density of the set of lines \(G^* \), joining points \(P_1 \) and \(P_2 \), \(t^* \) is the distance of the point \(P_2 \) from the base of the perpendicular \(p^* \), dropped from the origin to the line \(G^* \). \(dG^* = dp^* d\varphi^* \), where \(\varphi^* \) is the direction of the perpendicular \(p^* \).

\[\mu(x) = 2 \int_{s \leq R \leq x, \varphi \in \varphi^*} Rd\varphi^* dR. \]

From the triangle, whose vertices are the points \(P_1 \), \(P_2 \) and the image of the point \(P_2 \) in the domain \(K_2 \), and sides are \(|P_1P_2| = R \), \(|P_1P_1'| = r \), and \(|P_1P_2| = r \), we have that

\[\frac{R}{\sin(3\pi/2 - \varphi)} = \frac{z}{\sin(\varphi - \varphi^*)} = \frac{r}{\sin(r - \pi/2)}, \]

where \(\varphi \) is the direction of the perpendicular \(p \) from the origin to the line \(G \), passing through the points \(P_1 \) and \(P_2 \), and the direction of transport of the domain coincides with the direction \(\varphi^* = 0 \).

For the same triangle one has

\[R^2 = z^2 + r^2 - 2zr \cos(3\pi/2 - \varphi) = z^2 + r^2 + 2zr \sin \varphi. \]

We express \(dR, dp^*, dp^*, di^* \) in terms of \(dr, dp, d\varphi, dt \).

\[dR = R^{-1} \left[(r + z \sin \varphi) dr + zr \cos \varphi d\varphi \right]. \]

\[d\varphi^* = r \sin(\varphi - \varphi^*) \]

\[z \sin \varphi^* d\varphi^* = \sin(\varphi - \varphi^*) dr + r \cos(\varphi - \varphi^*)(d\varphi - d\varphi^*), \]

\[[z \sin \varphi^* + r \cos(\varphi - \varphi^*)] d\varphi^* = \sin(\varphi - \varphi^*) dr + r \cos(\varphi - \varphi^*) d\varphi. \]

We make use of the equalities

\[\sin(\varphi - \varphi^*) = -R^{-1} z \cos \varphi, \]

\[\cos(\varphi - \varphi^*) = R^{-1}(r + z \sin \varphi), \]

\[\cos \varphi^* = R^{-1} r \cos \varphi, \]

\[\sin \varphi^* = R^{-1}(z + r \sin \varphi). \]

\[[R^{-1} z (z + r \sin \varphi) + R^{-1} r (r + z \sin \varphi)] d\varphi^* = -R^{-1} z \cos \varphi dr + R^{-1} r (r + z \sin \varphi) d\varphi, \]

\[d\varphi^* = R^{-2} [-z \cos \varphi dr + (r + z \sin \varphi) d\varphi]. \]

According to the rules for the exterior product of differential forms (cf. [2, p. 13]), we get that

\[dRd\varphi^* = R^{-3} [r (r + z \sin \varphi)^2 - rz^2 \cos^3 \varphi] d\varphi. \]

One has the relations

\[p^*/[t - p \tan(\varphi - \varphi^*)] = \sin(\varphi - \varphi^*), \]

\[r^*/[t - p \tan(\varphi - \varphi^*)] = \cos(\varphi - \varphi^*). \]

Whence

\[p^* = t \sin(\varphi - \varphi^*) + p \cos(\varphi - \varphi^*), \]

\[r^* = t \cos(\varphi - \varphi^*) - p \sin(\varphi - \varphi^*). \]

From (7), (8), and (4), (5), we get

\[p^* = R^{-1} p (r + z \sin \varphi) - R^{-1} tz \cos \varphi, \]

\[t^* = t \cos(\varphi - \varphi^*) - p \sin(\varphi - \varphi^*). \]