SINGULAR INTEGRAL OPERATORS IN WEIGHTED L_2 SPACES

Yu. E. Khaikin

In this paper we consider singular integral operators (s.i.o.) with the symbol $\Phi(x, \xi)$, depending on a pole, in the space L_2 with the weight $|x|^\alpha = \rho^\alpha$.

1. Let \mathbb{R}^n be the n-dimensional Euclidean space and let S be its unit sphere. Let $L_{2,\alpha}$ be the space of functions defined on \mathbb{R}^n for which we have the finite norm

$$
\|u\|_{L_{2,\alpha}} = \|\rho^{\alpha}u\|_2 < \infty.
$$

Let \mathcal{D} be the space of infinitely differentiable functions with a compact support and let \mathcal{D}_0 be the set of functions $u \in \mathcal{D}$ for which $0 \notin \text{supp} u$. Let Q_s ($s \geq 0$ is an integer) be the set of functions $u \in \mathcal{D}$ satisfying the condition $\int_{\mathbb{R}^n} x^\omega u(x) dx = 0$, where ω is a multi-index of order $0 \leq |\omega| \leq s$.

Q_{-s} is the set of functions $u \in \mathcal{D}_0$ satisfying the condition

$$
\int_0^1 \rho^{-s} u(\rho, \theta) d\rho = 0, \quad q = 1, 2, \ldots, s, \quad 0 \leq \theta < \pi.
$$

Q_{-s}, Q_{s}, Q_{-s} are dense in the spaces $L_{2,\alpha}$ (see [1, 2]). $W^s_2(\mathbb{R}^n)$ is the Sobolev-Slobodetskii space. By introducing a local system of coordinates on the unit sphere, one defines the spaces $W^s_2(S)$ [3, 4]. Let δ be the Beltrami operator on the sphere, let E be the identity operator and let α be a real number. As shown in [3, 5], the norm $\| (E - \delta)^{\alpha/2} f \|_{L_2(S)}$ is equivalent to the norm $\| f \|_{W^s_2(S)}$. $L_\infty W^s_2(S)$ is the space of functions $f(x, \theta)$ which belong for almost all x to the space $W^s_2(X)$ with respect to the variable θ, and

$$
\| f \|_{L_\infty W^s_2(S)} = \text{vrai sup} \| f(x, \cdot) \|_{W^s_2(S)}.
$$

Following [5], to each function $f(\theta) \in L_2(S)$ we associate the series $f(\theta) = \sum_{k=0}^{\infty} \sum_{m=-\infty}^{\infty} a_{km} Y_{km}(\theta)$, where $Y_{km}(\theta)$ is the normed spherical function of homogeneity order k, $0 \leq k \leq \infty$, $m_k \sim k^{n-2}$ for $k \to \infty$.

It has been proved in [5] and [3] that the condition $f(x, \theta) \in L_\infty W^s_2(S)$ is equivalent to the boundedness of the series

$$
|a_{\alpha}(x)|^2 + \sum_{k=0}^{\infty} \sum_{m=-k}^{m_k} k^{2|\alpha|} |a_{km}(x)|^2
$$

uniformly with respect to x.

2. We denote by A_{km} the s.i.o. with the symbol Y_{km}

$$
A_{km}u = F^{-1}\tilde{Y}_{km} \tilde{F}u,
$$

where F is the Fourier transform and F^{-1} is its inverse.

Lemma 1. Let $\alpha \geq 0$ be a real number. We have the inequality

$$
\sum_{m=0}^{m_k} \| (E - \delta)^{\alpha/2} Y_{km} f \|_{L_2(S)} \leq c k^{\alpha-2+\alpha} \| (E - \delta)^{\alpha/2} f \|_{L_2(S)}.
$$

© 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for $15.00.
Proof. The proof of Lemma 1 makes use of the following estimate for spherical functions
\[\sum_{m=0}^{\infty} |D_m Y_{km}|^2 \leq C k^{n-2\alpha} |\alpha|, \]
which improves the similar estimate given in [5]. For the derivation of the estimate (1) one makes use of the method of induction and of the addition theorem for Legendre polynomials.

For integer \(\alpha \), Lemma 1 follows immediately from (1).

For noninteger \(\alpha \) the proof reduces with the aid of a local system of coordinates on the sphere \(S \) and of a diffeomorphic mapping onto \(\mathbb{R}^{n-1} \) to the estimate of fractional derivatives of the function \(Y_{km} \).

Lemma 2. Let \(\alpha \) be a real number, \(|\alpha| \neq n/2 + r, r = 0, 1, \ldots \). Then, for each function \(u \in Q_S (Q_{-S} \text{ for } \alpha < 0), s = [\alpha] - n/2 \), we have the inequality
\[\sum_{m=0}^{\infty} \|A_{km} u\|_{L^2}^2 \leq C k^{n-2\alpha s} \|u\|_{L^2}^2. \]

For \(|\alpha| < n/2 \), the membership of \(u \) in the set \(Q_S (Q_{-S} \) means that \(u \in \mathcal{D}(\mathcal{D}_0); \) \([\cdot] \) denotes the integer part of a number.

Proof. The proof of Lemma 2 is carried out for \(\alpha > 0 \) and \(\alpha < 0 \). For \(\alpha > 0 \) one makes use of the following inequality [6]
\[c_1 \|(-\Delta)^{\alpha/2} u\|_{L^2} \leq \|(-\Delta)^{\alpha/2} u\|_{L^2} + \|\rho^{-\alpha}(E - \delta)^{\alpha/2} u\|_{L^2} \leq c_2 \|(-\Delta)^{\alpha/2} u\|_{L^2} \]
where \(c_1, c_2 \) are constants which do not depend on the function \(u \) and by \(\Delta_\rho \) we have denoted the radial part of the Laplace operator \(\Delta \). With the aid of Parseval's equality and of the left-hand side of the inequality (3), the estimate of the norm of the operator \(A_{km} \) in the space \(L^2, \alpha \) reduces to the estimate of the norm \(\|\rho^{-\alpha}(E - \delta)^{\alpha/2} Y_{km} F_{\gamma - \xi} u\|_{L^2} \). But from Lemma 1 it follows that
\[\sum_{m=0}^{\infty} \|\rho^{-\alpha}(E - \delta)^{\alpha/2} Y_{km} F_{\gamma - \xi} u\|_{L^2}^2 \leq C k^{n-2\alpha s}\|u\|_{L^2}^2. \]

Making use of the right-hand side of the inequality (3), we obtain the required estimate (2).

For \(\alpha < 0 \) we turn to the adjoint operator \(A^*_{km} \), which acts in the space \(L^2, -\alpha \), conjugate to \(L^2, \alpha \). It is easy to show that
\[A^*_{km} = A_{km} - \sum_{|\alpha| > 0} D^{\alpha}_{\omega} A_{km}|_{x = x_{-}\omega}. \]

For the functions \(v \in Q_{-S} \) we have \(A^*_{km} v = A_{km} v \), and therefore
\[(A_{km} u, v) = (u, A_{km} v), u \in Q_s, v \in Q_{-s}. \]

Making use of the first part of the proof for \(\alpha > 0 \), we obtain the required estimate, since
\[\sum_{m=0}^{\infty} \|u, A_{km} v\|^2 \leq C k^{n-2\alpha |\alpha|}\|u\|^2, \|v\|^2. \]

For \(\alpha = 0 \), Lemma 2 follows at once from (1).

3. Let \(\Phi(x, \xi) \) be a positive function, homogeneous of degree zero with respect to \(\xi \). We associate to it the s.i.o.
\[A = \sum_{\alpha=0}^{n} \sum_{m=0}^{\infty} a_{\alpha m} A_{\alpha m}, \]
where \(a_{\alpha m} \) are the coefficients of the expansion of the function \(\Phi(x, \xi) \) into a series of spherical functions \(Y_{km} \). We introduce the notation
\[A_v = \sum_{\alpha=0}^{n} \sum_{m=0}^{\infty} a_{\alpha m} A_{\alpha m}. \]