

Inverse Scattering Problems and Restoration of a Function from the Modulus of Its Fourier Transform

M. V. Klibanov

INTRODUCTION

The following inverse scattering problem is studied: to find the shape of the surface, given the intensity of the coherent monochromatic light scattered by it in the far zone — the Fresnel diffraction zone or Fraunhofer diffraction zone [1] (for other statements of the inverse scattering problem, see [2-7]).

Mathematically, these problems reduce to the following: assume that Ω is a bounded domain in \mathbb{R}^n, $f \in C(\Omega)$ is a complex-valued function,

$$g(x) = \left| \int_{\Omega} \exp[-i \langle x, \xi \rangle] f(\xi) d\xi \right|^2, \ x \in \mathbb{R}^n.$$ \hspace{1cm} (0.1)

To restore function f, given function g.

Though problem (0.1) has been considered earlier (see [8-16] and the literature cited there), the uniqueness theorems seem only to have been strictly proved in the one-dimensional case; and it is assumed in these theorems either that f is an analytic function [9-11, 16], or that the diameter of Ω is sufficiently small [12, 13]; in [8], $\Omega = (-1, 1)$, and f is an even real function; in inverse scattering problems it is usually assumed that function f is complex-valued (see (1.1)-(1.4), [14]).

In the present article uniqueness theorems are proved for problem (0.1) in the class $f \in C^\omega(\Omega)$ (the smoothness can be reduced, see Note 2.1). The results of the article were announced in [17] (a lemma in [17] and Theorems 1-3 were proved by the present author). All the functions considered below are complex-valued unless otherwise stipulated.

1. Statements of Inverse Scattering Problems

The statements, cited here are due to V. G. Volostnikov and V. V. Kotlyar and are published here with their kind permission.

Let the plane $\{x_3 = 0\}$ in \mathbb{R}^3 be filled by a black screen with a hole Ω, where Ω is a bounded domain in \mathbb{R}^2. Let the body $T \subset \mathbb{R}^3$ be such that

$$T = \{x| (x, x_3) \in \Omega, \ x_3 \in (0, p(x, x_3))\},$$

$$p(x, x_3) \in C(\Omega), \ p > 0 \ in \Omega.$$

We assume that a plane monochromatic wave with wave number \(k \), \(u_0 = \exp(ikx_3) \) (laser beam), is incident on \(T \) from half-space \(\{ x_3 < 0 \} \). Let \(T \) be a "thin phase transparency," i.e., on passing through \(T \), only the wave (light) phase changes, the angular deviation of the scattered rays from \(x_3 \) axis being small [18, p. 320]. Then the amplitude of the refracted wave (we ignore reflection) immediately behind \(T \) has the form [19, p. 72]

\[
\begin{align*}
u = \exp(ik\psi(x_1, x_2)), \\
\psi(x_1, x_2) = n(x_1, x_2)p(x_1, x_2),
\end{align*}
\]

where \(n(x_1, x_2) \) is the refractive index of \(T \). By the Fresnel–Kirchhoff principle, with \(k, x_3 \gg 1 \) [1, p. 249],

\[
u(x) = -\frac{ik}{2\pi r} \int_0^1\exp(ik\psi(\xi))d\xi,
\]

\[
r = \sqrt{(x_1 - \xi_1)^2 + (x_2 - \xi_2)^2 + x_3^2}.
\]

Let \(P \) be a finite domain in \(\mathbb{R}^2 \) and \(k \gg 1 \), \(\frac{|x_3 - \xi_3|}{|x_3|} \ll 1 \) \(V(x_1, x_2) \subseteq P, V(\xi_1, \xi_2) \subseteq \Omega \), i.e., \(\{ x | (x_1, x_2) \in P, x_3 = \text{const} \} \) is the "brightness domain" on the plane \(\{ x_3 = \text{const} \} \). Then, in the Fresnel approximation, for these \(x_3 \) we can put [1, p. 255]

\[
u(x_1, x_2, x_3) = -\frac{ik}{2\pi x_3}\exp(ikx_3)\int_0^1 \exp \left[ik \left(\frac{|x - \xi|^2}{2x_3} \right) \right] \exp(ik\psi(\xi))d\xi,
\]

where \(\xi = (x_1, x_2) \).

Problem 1.1. We know the functions

\[
H_j(x) = \left| \int_0^1 \exp \left[ik \left(\frac{|x - \xi|^2}{2x_3} \right) \right] f(\xi) d\xi \right|^2.
\]

Here, \(x = (x_1, x_2) \in P, j = 1, 2, \alpha_1, \alpha_2 = \text{const} \in R, \alpha_1, \alpha_2 \neq 0, \alpha_1 \neq \alpha_2 \). We want to find function \(f \in C(\Omega) \).

In other words, \(\{ x_3 = \alpha_j \} \) is the plane in \(\mathbb{R}^3 \) on which the scattered light intensity is measured. Since functions \(H_j \) are analytic in \(\mathbb{R}^2 \), being functions of real variables, and are known in the domain \(P \subset \mathbb{R}^2 \), they can be assumed to be known for all \(x \in \mathbb{R}^2 \).

Problem (1.1) can also be interpreted as the problem of finding the initial condition in the nonstationary Schrödinger equation from measurements of the modulus-squared of its solution at different instants.

Now let \((\xi_1^2 + \xi_2^2)(2x_3)^{-1} \ll 0\) in (1.1) be the Fraunhofer zone [1, p. 259]. Denoting \(y_j = -kx_j(2x_3)^{-1} \), we obtain

\[
Q(y) = \left| \int_0^1 \exp \left[i \langle y, \xi \rangle \right] \exp(ik\psi(\xi)) d\xi \right|^2,
\]

where \(Q(y) = |u2\pi x_3 k^{-1}|^2 \).

Problem 1.2. Function \(Q(y), y \in \mathbb{R}^2 \), is known. To find function \(\psi \).

If we consider laser light scattering at a convex body \(T \), we can use arguments of the type of [7] to obtain for the scattered light intensity \(H_j(x) \), measured on the plane \(\{ x_3 = \alpha_j \} \), in the Fresnel–Kirchhoff approximation the expression (1.2) with

\[
f(\xi) = \exp(ikp(\xi)),
\]

where \(\{ x_3 = p(x_1, x_7) \} \) is the equation of the illuminated part \(S \) of surface \(T, \Omega \) is the orthogonal projection of \(S \) onto plane \(\{ x_3 = 0 \} \). The situation (1.4) is encountered, e.g., when analyzing "roughnesses" of a surface, due to finishing defects.

2. Some Lemmas

We shall prove some lemmas, needed for what follows.