The present paper arose from an attempt to understand the connection between the phenomenon of a cyclic object and the action of the circle on a topological space. The concept of cyclic object lies at the base of the construction of cyclic homology, introduced independently by A. Connes [1] and B. L. Tsygan [2]. There have already appeared dihedral, quaternionic, and symmetric objects [3, 4]. It turns out that all of them can be unified in the framework of the general concept of the action of a skew-simplicial group on a simplicial object.

It is shown in the first section that the category of skew-simplicial groups has a non-trivial final object \(W \), consisting of the Weyl groups of a system of roots of type \(B \). Each skew-simplicial group is an extension of some simplicial group by one of the seven objects in \(W \). The second section is devoted to connections with equivariant topology. It is proved that the geometric realization \(|G| \) of a skew-simplicial group \(G \) is a topological group. Moreover, the homotopy category of simplicial sets with action of \(G \) is equivalent to the homotopy category of topological \(|G| \)-spaces.

Let \(\Delta \) be the category of finite totally ordered sets \([n] = \{0, 1, \ldots, n\} \) and non-decreasing maps. We consider the dual category \(\Delta^0 \). It is well known that its morphisms are generated by the simplest morphisms of the form

\[
d^i : [n] \to [n-1], \quad s^i : [n] \to [n+1], \quad 0 \leq i \leq n.
\]

which satisfy the following relations:

\[
d^i d^j = d^i-1 d^j, \quad i < j; \tag{1}
\]

\[
d^i s^j = \begin{cases}
 s^j-1 d^i, & i < j, \\
 id, & i = j, \\
 s^j d^i, & i > j + 1; \\
 s^i s^j = s^i+1 s^j, & i \leq j.
\end{cases} \tag{2}
\]

Definition 1.1. A small category \(\Sigma \) is called a category of type \(\Delta \) if it contains \(\Delta \) as a subcategory and has the same objects. In addition, it is required that each morphism \(f \in \text{Hom}_\Sigma ([n], [m]) \) can be represented uniquely as a composition \(f = \varphi \cdot g \) where \(g \in \text{Aut}_\Sigma [n] \) and \(\varphi \in \text{Hom}_\Delta ([n], [m]) \).

Thus, a category \(\Sigma \) of type \(\Delta \) is determined completely by a collection of automorphisms of \(\text{Aut}_\Sigma [n], n = 0, 1, \ldots \) and rules for commutation with the morphisms of \(\Delta \). The collection of such \(\Sigma \) forms a category \(\text{Cat} \Delta \) with functors preserving \(\Delta \) as morphisms.

Example 1.2. The category \(\Delta W \). We define a sequence of groups \(W_n = (Z/2)^{n+1} \times \Sigma_{n+1}, n = 0, 1, \ldots \)

\[
[n] \times \Sigma_{n+1} \to [n], \quad (i, \tau) \mapsto \tau^*(i),
\]

and \(Z/2 \) is the group with two elements \(\{+1, -1\} \). We define the multiplication

\[
((\varepsilon_0, \ldots, \varepsilon_n), \tau)((\eta_0, \ldots, \eta_n), \sigma) = ((\varepsilon_0 \cdot \eta_0, \ldots, \varepsilon_n \cdot \eta_{n+1}), \tau \cdot \sigma).
\]

On \(W \), we introduce the structure of a simplicial set, defining the face and degeneracy operators in the following way:
Finally, we define the category ΔW of type Δ by commutation relations in the dual form (i.e., for the category ΔW^0):

$$d^i \omega = (d^i \omega) \cdot d^{\omega (0)}, \quad s^j \omega = (s^j \omega) \cdot s^{\omega (0)}. \quad (7)$$

Here ω^* denotes the action of the group W_n on the set $[n]$, induced by the obvious projection $W_n \to \Sigma_n+1$.

Definition 1.3. A skew-simplicial group is a pair (G, γ), consisting of a simplicial set G and a simplicial map $\gamma: G \to W$, for which the following conditions hold:

1) the set G_n is a group and the map γ_n a homomorphism for each n;
2) for each n and all $0 \leq i \leq n$, $0 \leq j \leq n$ one has

$$d^i (g_1, g_2) = (d^i g_1) \cdot d^i (\gamma (g_1) (i) g_2), \quad (8)$$

Here and below for awkward indices we use the abbreviations $d^i = d^i \gamma$, $s^j = s^j \gamma$.

By a morphism of skew-simplicial groups $(G, \gamma) \to (G', \gamma')$ is meant a simplicial map $f: G \to G'$ such that f_n is a homomorphism for each n, while $\gamma = \gamma' \cdot f$. We denote the category of skew-simplicial groups by Skew-SGr.

Theorem 1.4. One has an isomorphism of categories

$$\text{Cat}_\Delta \cong \text{Skew-SGr}. \quad (9)$$

Proof. Let Σ be a category of type Δ. We construct a skew-simplicial group structure on $G = \text{Aut}_\Sigma \{.[.\}$ in four steps. For convenience we shall work in the dual category Σ^0. By the letter g (possibly with dashes) we shall denote the elements of G.

Step 1. Structure of simplicial set. According to Definition 1.1, the morphism $d^i \cdot g$ of the category Σ^0 can be written uniquely in the form $g^* \cdot d^i$. The correspondence $g \mapsto g^*$ defines operators $d^i: G_n \to G_{n+1}$. Analogously, we get operators $s^j: G_n \to G_{n+1}$. The simplicial identities (1)-(3) automatically hold by virtue of the uniqueness.

Step 2. Construction of homomorphisms $e_n, \bar{e}_n: G_n \to \Sigma_{n+1}$. The equation $d^i \cdot g = g^* \cdot d^i$ from the first step also gives a correspondence $(d^i, g) \leftrightarrow g^*$, defining a right action of G_n on the set $[n]$: $g^*(i) = j$. This is equivalent to giving a homomorphism $e_n: G_n \to \Sigma_{n+1}$ (cf. Example 1.2). In exactly the same way, from the equations $s^j \cdot g = g^* \cdot s^j$ we get a homomorphism $\bar{e}_n: G_n \to \Sigma_{n+1}$.

Step 3. The homomorphisms e and \bar{e} are equal. We introduce the abbreviations $g^* = e(g)^*$, $\bar{g}^* = \bar{e}(g)^*$. As a result of steps 1 and 2, we have the equations

$$d^i \cdot g = (d^i g) \cdot d^{\omega (0)}, \quad s^j \cdot g = (s^j g) \cdot s^{\omega (0)}, \quad (9)$$

which let us make the transformations

$$d^i \cdot s^j \cdot g = (d^i s^j g) \cdot d^{\omega (0)} (i) \cdot s^{\omega (0)} (j),$$

$$s^j \cdot d^i \cdot g = (s^j d^i g) \cdot d^{\omega (0)} (j) \cdot s^{\omega (0)} (i).$$