AN AUTOMATIC COMMUTATING DEVICE FOR MULTICURVE STRAIN RECORDING

A. M. Davydov

Experiments in which one instrument records reading of several transducers require commutating devices.

The commutator whose schematic (in the nonoperative condition) is represented in Fig. 1 can serve up to 100 transducers.

Relays A and B constitute a pulsating pair which provides pulses for the electromagnet (EM) of a step-by-step selector. Switch T₁ provides in position 1 access to all the transducers and in position 2, to one at a time.

Push-button K serves to start the commutator by operating relay A over circuit 0-1. The normally open contact A₁ closes circuit 2-2 and energizes relay B. In its operation, relay B closes the normally open contact B₁ in the 3-3 circuit, thus operating the electromagnet EM. When button K is released, circuit 0-1 is opened, and relay A is deenergized. Circuit 2-2 is broken through contact A₁, thus deenergizing relay B. In releasing, relay B opens contact B₁ in circuit 3-3; since the circuit becomes deenergized, the electromagnet EM releases, and the step-by-step selector makes one step.

If switch T₁ is in position 2, there will be no repeated operation of relay A (circuit 1-1 is broken), although the driving contact of the selector Dₖ will close after the completion of the step. In order to make relay A operate again, button K must be depressed again, thus making the selector wipers advance one more step.

If switch T₁ is in position 1, circuit 1-1 will be closed after the first step of the selector through contact Dₖ and the normally closed contact B₂. In this position relay A will operate again, etc. The pulse-sending cycle will be repeated, i.e., the depression of button K will in this case connect all the transducers sequentially.

The connecting time of each transducer can be varied between 0.05 and 0.5 seconds by means of the variable resistor R₀ = 3 kilohms and capacitor C = 100 mF, which are connected in the relay B circuit. Relay B is made slow-releasing.

Thus, the pulse-pair of relays, whose pulse duration can be controlled, is the driving element of the commutating device.

Type RKN relays have been used for the pulse-pair, and relay B equipped with a copper ring (basic lagging of the relay).

Spark-quenching circuits are connected across the contacts of relays A and B between the positive supply voltage and the contacts of the relays. These circuits consist of series-connected resistor r = 10 ohms and capacitor C₁ = 1 mF, connected in parallel with the sparking contact.

The basic switching device of the commutator is the step-by-step selector ShI-25/4 which has four multiples of 25 working contacts each. The selector levels are switched by means of relays C, P, R, and Q.

Type TV2-1 tumbler switches T₂, T₃, and T₄ limit the number of connected transducers.
If the switch T_4 is in position 2, the sending of pulses is stopped as soon as 26 transducers have been discretely connected, since when the selector returns to normal it opens contact D_k, breaks circuit 1-1, and releases relay A.

If switch T_2 is in position 1, but T_3 in position 2, 50 transducers are discretely connected, since relay C is released by the operation of the normally closed contact E_1 in circuit 5-5. The normally open contacts C_4 and D_k in circuit 1-1 will, of course, remain open, and relay A will be de-energized.

If switches T_2 and T_3 are in position 1, and T_4 in position 2, 75 transducers will be discretely connected, since circuit 1-1 will be broken by the normally open contact P_4 after relay P is released by the normally closed contact E_2 in circuit 7-7.

Relays C and P are released by the auxiliary relay E, which operates over circuit 6-b when T_3 is operated, or over 8-b when T_4 is in position 2, and breaks circuit 5-5 by its normally closed contact E_1, or circuit 7-7 by its normally closed contact E_2, thus energizing either relay C or P.

Finally, when all the switches T_2, T_3, and T_4 are in position 1, all 100 transducers are discretely connected.

Let us examine the operation of the switching relays when switches T_2, T_3, and T_4 are in position 1. Relay C connects selector multiples I or II. In the initial position the wiper of the first multiple is connected through the normally closed contacts C_1 and P_3 to the positive side of the supply voltage (circuit 4-4). The remaining selector multiples are not supplied with current. After the 25 transducers have been connected in turn, relay C operates over circuit 4-5 and locks itself through its normally open contact C_4 and the normally closed contacts P_1 and E_1 over circuit 5-5. Simultaneously, the normally closed contact C_4 breaks the 4-4 circuit thus deenergizing multiple I, and the normally open contact C_3 connects multiple II (circuit 6-6). In circuit 1-1 the normally open contact C_4 will close, and relay A will be energized, although contact D_k will remain open in the initial (zero) position of the selector.

After the second revolution of the selector rotor, relay P operates over circuit 6-7, and the normally closed contact P_1 in circuit 5-6 unlocks relay C. At the same time contact C_3 breaks the circuit of multiple II, and multiple I cannot be reconnected, since the normally closed contact P_3 is now open. Relay P locks itself through the normally open contact P_4 and the normally closed contacts Q_2 and E_2 over circuit 7-7, connecting through the normally open contact P_2 and the normally closed contact R_1 the wiper of multiple III to the positive side of the supply voltage (circuit 8-8). In circuit 1-1 relay A is prepared for further operation through the normally open contact P_4, which is now closed.

Finally, selector multiple IV is connected through the normally open contact R_3 when relay R is operated over circuit 8-9, and locks itself through the normally open contact R_2 and the normally closed contact Q_1 (circuit 9-9). The multiple III wiper circuit is broken by the normally closed contact R_4, which is now open. Since relay P remains locked, circuit 1-1 remains closed through the normally open contact P_4, which is still closed, and relay A remains operative.

After the 100 transducers have been connected in turn, relay Q operates over circuit 10-10, and unlocks relays P and R by its contacts Q_2 in circuit 7-7 and Q_1 in circuit 9-9. Circuit 1-1 is disconnected, since the selector wipers have returned into their initial position, and the pulse-pair stops the sending of pulses. The contacts of the switching relays return to their initial position.

For a further operation of the commutator, it is sufficient to press button K. For this purpose any normal open button switch can be used.

The switching relays C, P, R, and Q and the auxiliary relay E are of the quick-operating type RKM, whose operating time and release time must be less than 10 msec. Other types of relays can also be used, providing they are made quick-operating by means of any suitable circuit.

The Shl-25/4 selector contact segments cannot provide a constant contact resistance, and the transducers have to be connected, therefore, to the measuring circuit through relay contacts. The windings of these relays are