RESPONSE OF Dendroctonus brevicomis AND Ips paraconfusus (COLEOPTERA: SCOLYTIDAE) TO COMBINATIONS OF SYNTHETIC PHEROMONE ATTRACTANTS AND INHIBITORS VERBENONE AND IPSDIENOL

T.D. PAINE* and C.C. HANLON

Department of Entomology
University of California
Riverside, California 92521

(Received February 8, 1991; accepted July 8, 1991)

Abstract—Dendroctonus brevicomis and Ips paraconfusus are sympatric bark beetle species colonizing Pinus ponderosa in western North America. Inter-specific and intraspecific competition for resources is, in part, mediated through semiochemicals. The response of D. brevicomis to its attractant pheromone was significantly reduced by simultaneous release of either verbenone or racemic ipsdienol. Trap catch was significantly further reduced by including both inhibitors with the attractant pheromones. However, although the response of Ips paraconfusus was significantly inhibited with the addition of either verbenone or racemic ipsdienol, both compounds together did not result in a significant further reduction in trap catch. There was a trend for greater reduction in response of D. brevicomis to attractant pheromones with increased release rates of either 69% (+)-/31% (−)-verbenone or 84% (−)-/16% (+)-verbenone. Response of associates to attractants and inhibitor combinations was also determined.

Key Words—Dendroctonus brevicomis, Ips paraconfusus, bark beetle, verbenone, ipsdienol, pheromones, inhibitors, Coleoptera, Scolytidae.

INTRODUCTION

The western pine beetle, Dendroctonus brevicomis LeConte, uses a combination of beetle-produced pheromones [(+)-exo-brevicomin {(+)-exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane} and (−)-frontalin{(−)-1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane]} (Silverstein et al., 1968; Kinzer et al., 1969;

*To whom correspondence should be addressed.

2163
Wood et al., 1976) and host odors, primarily myrcene (Bedard et al., 1969), during the aggregation phase of tree colonization (Wood, 1972). The engraver beetles, *Ips paraconfusus* Lanier and *I. pini* (Say), are sympatric with *D. brevicomis* in California and may colonize the same host material. *Ips paraconfusus* pheromone consists of three components: (−)-ipsenol[(-)-2-methyl-6-methylene-7-octen-4-ol], (+)-cis-verbenol, and (−)-ipsdienol[(+)-2-methyl-6-methylene-2,7-octadien-4-ol] (Silverstein et al., 1966). The pheromone of *I. pini* in California was initially described as a single component pheromone, (−)-ipsdienol (Birch et al., 1980a, b); however, there is some suggestion that a second component may be important to complete the pheromone blend (S.A. Teale, personal communication).

The pheromones produced have interspecific effects in addition to the intraspecific effect. Attraction of *I. pini* to its pheromone is inhibited by racemic ipsenol (Birch and Light, 1977) and to (−)-ipsdienol (Birch et al., 1980a, b). These compounds are components of *I. paraconfusus* aggregation pheromone. Similarly, attraction of *I. paraconfusus* to its pheromone is inhibited by (−)-ipsdienol (Light and Birch, 1979), a component of the aggregation pheromone of *I. pini*. *Dendroctonus brevicomis* was inhibited by actively boring *I. paraconfusus* (Byers and Wood, 1980). Subsequent studies by Byers and Wood (1981a) demonstrated that at least two of the constituents of *I. paraconfusus* pheromone must be present for the inhibitory effect.

Although the constituents of *D. brevicomis* pheromone function to attract individuals, high release rates of exo-brevicomin or myrcene may also function to interrupt the response (Tilden et al., 1981). Oxidation of tree-produced α-pinene by either beetles or by microorganisms results in production of verbenone. This compound found in male *D. brevicomis* (Byers and Wood, 1980) interrupts the response of *D. brevicomis* (Bedard et al., 1980) to its attractant pheromone. In addition, verbenone similarly inhibits the attraction response of *I. paraconfusus* (Byers and Wood, 1980, 1981a).

Colonization of conifers usually occurs as a community process. Although there may be a temporal separation, it would be expected that each species in the community would produce the components of its pheromone with the resulting potential for interspecific and intraspecific interactions. The objective of the study presented here was to determine how the compounds associated with inhibition would effect aggregation of *D. brevicomis* and *I. paraconfusus* if presented singly or in combination.

METHODS AND MATERIALS

The behavioral responses of *D. brevicomis* and *I. paraconfusus* to interspecific and intraspecific chemical signals were examined at two locations during July and August 1990. Each site had obvious tree mortality, and examination