It has been very rewarding to be able to spend time on seeing how the various strands of Sosa's subtle and complex epistemology combine to form an impressive and coherent whole, in which the reader feels that Sosa has avoided the enthusiasm inherent in the adoption of any one of the classic positions, without going to the holistic extreme of supposing that if one avoids the bad parts of a theory one is unable to profit from the good ones. Reading the different papers in this collection has had several salutory effects on me for which I hope I am suitably grateful, of which perhaps the most noticeable has been that I have had to rethink entirely my reasons for rejecting foundationalism.

On the present occasion I am going to raise two questions about the underlying structure of Sosa's position. As I understand it, virtue perspectivism offers, among other things, a general picture of what one might call the metaphysics of epistemic justification. This is that justification emerges from the operation of the epistemic virtues. A belief is justified if it is the product of a reputable epistemic faculty (intuition, memory, perception, reason, introspection). There are at least these five channels, as it were, for the emergence of justification; though there may in fact be more than five – epistemic theory as such does not pronounce on the actual number of virtues. The list of channels is not just a list, however. It is unified by a feature common to all the faculties that are virtues (i.e. capable of generating justified beliefs), namely their tendency to produce truth. The common presence of this feature systematises the list, and means that what we have produced is a theory, not just a description of how things are.

The theory so produced instantiates what Sosa calls the highest grade of formal foundationalism. There are three grades of formal foundationalism: ‘first, the supervenience of epistemic justification; second, its explicable supervenience; and, third, its supervenience explicable by means of a simple theory’. This is the first matter I want to try to understand better. The first thing to get clear is the relation between formal foundationalism of the lowest grade and some doctrine of the supervenience of justification. Sosa does not always give quite the same account of what the doctrine of supervenience is supposed to be. Here are two versions:

The *doctrine of supervenience* for an evaluative property \mathcal{O} is simply that, for every x, if x has \mathcal{O} then there is a non-evaluative property (perhaps a relational property) Y such that (i) x has Y, and (ii) necessarily, whatever has Y has \mathcal{O}.\(^2\)

... the supervenience of \mathcal{O} [is] simply the idea that whenever something has \mathcal{O} its having it is founded on certain others of its properties which fall into certain restricted sorts.\(^3\)

Are these the same or are they not? I suspect that they are not, and that the confusion between them is partly responsible for Sosa’s identification of formal foundationalism of the lowest grade with some doctrine of supervenience.

What I want to suggest is that Sosa has a picture of the metaphysics of epistemic justification, and that he thinks that this picture can be held in place by appeal to the concept of supervenience — but that he is wrong about this. The picture is that justification is a high-level property (for present purposes it counts as a top-level property) and that there are just various different ways of getting that property. This remark (which is perhaps all that the lowest grade of formal foundationalism amounts to) might easily be thought of as absolutely trivial, and so perhaps it is. But my present question is what, if anything, it has to do with supervenience.

We do of course want our supervenience doctrine to be true. With that in mind, let us consider the first characterisation of supervenience above. For this doctrine to be true, we need to be able to find non-evaluative properties Y such that necessarily whatever has them has \mathcal{O}. Now surely no ordinary properties Y will be of this sort. For suppose that we start from a case of an object b which has Y and \mathcal{O}, and which has \mathcal{O} because it has Y, in the sense that having Y makes it have \mathcal{O}. Are we to suppose...