BASIS PROBLEM FOR A FREE ALTERNATIVE Φ-ALGEBRA

N. S. Prokhanov

Despite the fact that in recent years many interesting results pertaining to the structure of a free alternative Φ-algebra have been obtained [1–4], there is still no effective method for constructing a basis. In the present paper we construct a basis for a Φ-module whose elements are those of a free alternative Φ-algebra with three generators, linear in one of the generators, over an integral domain Φ.

1. Recall that a Φ-algebra is called alternative if it satisfies the identities

$$(xx)y = x(xy), \ (xy)x = x(yx).$$

(1)

Suppose x, y, z are elements of an alternative Φ-algebra. We will employ the following notation: $[x, y, z] = (xy)z - x(yz)$ is the associator of x, y, z; $[x, y] = xy - yx$ is the commutator of x, y; $[xy]^n = \prod_{i=1}^{n} \{x, y\}$; $[xy]^m = \prod_{i=1}^{m} \{x, y\}$; R_x is right multiplication by x; L_x is left multiplication by x; T_x is right or left multiplication by x.

In the multiplication ring of an alternative Φ-algebra we have the relations

$$R_x = R_y + L_y R_x - R_x L_y,$$

(2)

$$L_x = L_y + R_y L_x - L_x R_y.$$

(3)

We will also use the following well-known identities:

$$(x, xy, z) = (x, y, z)x,$$

(4)

$$(x, yz, z) = x(x, y, z),$$

(5)

$$(x, y, z) : xy = (x, y, z)y \cdot x,$$

(6)

$$xy \cdot (x, y, z) = y \cdot x(x, y, z).$$

(7)

Proofs of these identities can be found, e.g., in [5, 6]. Furthermore, we will use the identities

$$\sum_{i=0}^{n} (-1)^i a^i x a^{n-i} = [xa^n]$$

(8)

(here and later on, a^0 denotes the empty word) and

Proof of (8) can be found in [7], and (9) is given in [8].

Suppose \(\mathfrak{A} \) is an integral domain of characteristic different from 2, and \(R \) is a free alternative algebra with three generators \(a, b, c \) over \(\Phi \). We introduce the following notation: \(\mathfrak{A} = \mathfrak{A}/(c)^2 \), \(K_1 = (c, a, b) \), \(K_r = (K_{r-1}, a, b) \), where \(r \geq 2 \); \(D_n \) is the ideal of algebra \(\mathfrak{A} \), generated by the element \(K_n \). Clearly, \(D_1 = D_2 = \ldots = D_n \supseteq \ldots \). Note that \(D_1 \) is the associator ideal of \(\mathfrak{A} \). In the sequel we will denote it by \(D \). Also, for any \(x, y \in D \) we will write \(x \equiv y \pmod{D_n} \). Clearly, \(\equiv \) is an equivalence relation on \(D \).

Since the quotient algebra \(\mathfrak{A}/D \) is associative, any element of \(\mathfrak{A} \) can be represented as a sum of elements with a right arrangement of parentheses and elements of the ideal \(D \). The aim of the present paper is to show that the set \(B = \{b_i(K_r a^i b^j)\} \) is a basis of the ideal \(D \) as a \(\Phi \)-module.

2°. In this section we will show that any element of \(D \) is a linear combination of elements of the set \(B \).

Lemma 1. For any \(x \in D \) we have the equalities \(x(ab) = (xb)a \), \(x(ba) = (xa)b \), \((ab)x = b(ax) \), \((ba)x = a(bx) \).

Proof. Identities (2) and (3) enable us to represent any element \(x \in D \) as a linear combination of elements of the form \(K_r T_y \ldots T_{y_n} \), where \(y_i \in (a, b) \). If we first apply identities (4) and (5), then (6) and (7), and then again (4) and (5), we obtain \(x = x_1 + x_2 + \ldots + x_{r+1} \). This implies the first of the equalities being proved. The others are handled analogously.

Lemma 2. For any \(x \in D \), we have

\[
x R_b R_a = x R_a R_b, \quad x R_a L_b = x L_a R_b, \quad x L_b R_a = x R_b L_a, \quad x R_b L_a = x L_b R_a.
\]

Proof. By Lemma 1, \(x R_b R_a = (xb)a = x(ab) \equiv (xa)b = x R_a R_b \). The remaining cases are handled analogously.

Lemma 3. The set \(B = \{b_i(K_r a^i b^j)\} \) is a system of generators of the \(\Phi \)-module \(D \).

Proof. In view of Lemma 2, it is clear that any element of the ideal \(D \) is equivalent \(\pmod{D_{r+1}} \) to a linear combination of elements of the form \(b_i(K_r a^i b^j) \). An element of this form equivalent to \(z \) will be denoted by \(z_r \). Then for each \(x \in D \) there exist elements \(x^{(i)} \in D \) such that \(x = x_1 + x_2 + \ldots + x_{r+1} \). Since the number of generators appearing outside the associators in the elements \(x^{(i)} \) decreases with each step, there exists an \(m \) such that \(x^{(m)} = 0 \). Adding \(m-1 \) equalities termwise, we obtain \(x = x_1 + x_2 + \ldots + x_{m-1} \). Since the elements appearing on the right-hand side have the prescribed form, the theorem is proved.

3°. In this section we will prove that the set \(B \) is linearly independent over \(\Phi \).

Lemma 4. For any natural number \(r \), any nonnegative integer \(m \), and any nonzero element \(\alpha \in \Phi \) we have

\[
\alpha [K_r a^m b^n] \neq 0.
\]

Proof. Let \(\mathbf{K} \) be a Cayley algebra over \(\mathbf{Z} \). Since relation (10) holds in the algebra \(\Phi \otimes \mathbf{K} \), it is also true in \(\mathfrak{A} \), but its left-hand side is linear relative to \(c \), hence relation (10) holds in \(\mathfrak{A} \).

Lemma 5. For any natural numbers \(m, n, r \) and any nonzero \(\alpha \in \Phi \) we have

\[
\alpha [K_r a^m b^n] \neq 0.
\]

Proof. If \(\alpha [K_r a^m b^n] = 0 \), then

\[
\alpha [K_r a^m b^n] = \sum_{y_1 \ldots y_n} K_{r+1} T_{y_1} \ldots T_{y_n},
\]

where \(y_1, \ldots, y_n \in \{a, b\} \). Since \(b \) is a free generator, it follows that

\[
\alpha [K_r a^m (a + b)^n] = \sum_{z_1 \ldots z_n} K_{r+1} T_{z_1} \ldots T_{z_n},
\]

where \(z_1, \ldots, z_n \in \{a, b\} \). Each term on the right-hand side has degree greater than \(r \) with respect to \(b \). On the left-hand side there is a single term \([K_r a^{rn+p}] \) having degree \(r \) with respect to \(b \). In view of the homogeneity