Transient Heat Transfer Between a Perfect Conductor with Heat Generated in it and a Semi-infinite Solid Including a Contact Resistance

E. Muchowski, Karlsruhe

Abstract. Analytical solutions are presented for heat conduction between a semi-infinite solid and a perfect conductor with internal heat generation, taking into account a thermal contact resistance at the interface.

1 Description of the Problem

The boundary and initial conditions are:
- Heat is supplied to the perfect conductor at constant rate Q/M per unit mass and unit time.
- The initial temperature of the solid is zero.
- The initial temperature of the perfect conductor is \(u \).
- There is heat transfer between the perfect conductor and the surface of the solid \((x = 0) \) at rate \(H \) times their temperature difference.

We write \(c' \) for the specific heat of the perfect conductor, \(u \) for its temperature and \(M \) for the mass in contact with unit area of the surface \((x = 0) \) of the solid.

The temperature of the solid is \(v \), its thermal conductivity \(K \) and its thermal diffusivity \(\kappa \).

Then the heat conduction problem can be described by the equations

1. Energy conservation in the perfect conductor

\[
Q = Mc' \frac{du}{dt} + H(u - v) \quad |x = 0, t > 0
\]

2. Energy equation in the semi-infinite solid

\[
\frac{d^2v}{dx^2} - \frac{1}{\kappa} \frac{dv}{dt} \quad |x > 0, t > 0
\]
3. Initial conditions
\[v = 0 \quad | \quad t = 0 \]
\[u = V \quad | \quad t = 0 \]

4. Boundary condition
\[H(u - v) + K \frac{dv}{dx} = 0 \quad | \quad x = 0. \]

2 Solution of the Problem

When the temperature of the perfect conductor is assumed to be a constant \(u = V \), the solution for the temperature field can be obtained from the literature e.g. Carslaw & Jaeger [1]

\[v = V \cdot \left[\text{erfc} \left(\frac{x}{2\sqrt{\kappa t}} \right) - e^{hx h^2 \kappa t} \cdot \text{erfc} \left(\frac{x}{2\sqrt{\kappa t}} + h'i(t-t') \right) \right] \]

with
\[h = \frac{H}{K}. \]

Following Duhamel's theorem, the temperature \(v \) in the case of time-dependent \(u(t) \) is given by the convolution integral

\[v = \int_{0}^{t} u(t') \frac{\partial}{\partial t'} \left[\text{erfc} \left(\frac{x}{2\sqrt{\kappa (t-t')}} \right) - e^{hx h^2 \kappa (t-t')} \cdot \text{erfc} \left(\frac{x}{2\sqrt{\kappa (t-t')}} + h'i(t-t') \right) \right] dt'. \]

and, at \(x = 0 \)

\[v(0,t) = \int_{0}^{t} u(t') \frac{\partial}{\partial t'} \left[1 - e^{hx h^2 \kappa (t-t')} \cdot \text{erfc} \left(h'i(t-t') \right) \right] dt'. \]

Introducing
\[\varepsilon = \frac{Q}{HV} \]
\[\mu = \frac{M \cdot c'}{H} \cdot h^2 \kappa \]
and writing dimensionless temperatures
\[u^+ = \frac{u}{V} \]
\[v^+ = \frac{v}{V}, \]

the dimensionless time \(\tau = h^2 \kappa t \) and the dimensionless position \(\xi = h \cdot x \) one obtains from Eq. (1)

\[\varepsilon = \mu \frac{\partial u^+}{\partial \tau} + (u^+ - v^+) \bigg|_{\xi=0}. \]

From the Laplace transform of Eq. (16) one gets with respect to the initial condition 4

\[\frac{\xi}{t} = \mu (u^+ \cdot p - 1) + (\hat{u}^+ - \hat{v}^+) \bigg|_{\xi=0}. \]

Transformation of Eq. (8) leads to

\[v^+ = \frac{u^+}{\sqrt{p + 1}} \cdot \frac{1}{\sqrt{p}} \cdot e^{-\sqrt{p} \cdot \xi}. \]

Substituting Eq. (18) into Eq. (17) one obtains

\[\hat{u}^+ = \frac{\sqrt{p} + 1}{\sqrt{p}(p + \sqrt{p} + \mu - 1)} \left(\frac{\xi}{p \mu} + 1 \right) \]

\[\hat{v}^+ = \frac{1}{\sqrt{p}(p + \sqrt{p} + \mu - 1)} \left(\frac{\xi}{p \mu} + 1 \right) e^{-\sqrt{p} \xi}. \]

By defining the constants \(a \) and \(b \) by the Equation

\[\frac{1}{p + \sqrt{p} + \mu - 1} = \frac{1}{\sqrt{p} + a} \frac{1}{\sqrt{p} + b} \]

the inverse Laplace transformation of the Eqs. (19) and (20) leads to the temperatures \(u^+ \) and \(v^+ \) [1, 2]

\[v^+ = e^{-\frac{\xi^2}{4\tau}} \left[W \left(\sqrt{\tau} \cdot (\xi + \mu) + \frac{\xi}{2\sqrt{\tau}} \right) \right] \cdot \varepsilon \]

\[+ \frac{\xi}{a-b} \left[\frac{a}{b} W \left(\sqrt{\tau} \cdot b + \frac{\xi}{2\sqrt{\tau}} \right) - \frac{b}{a} W \left(\sqrt{\tau} \cdot a + \frac{\xi}{2\sqrt{\tau}} \right) \right] \]

where the function \(W \) is defined as

\[W(z) = e^{z^2} \text{erfc} z. \]

At \(\xi = 0 \) one obtains for the temperature of the solid

\[v^+ = \left(\frac{2}{\sqrt{a}} \sqrt{\tau} \cdot \mu + \frac{\xi}{a-b} \left[\frac{a}{b} W (\sqrt{\tau} \cdot b) - \frac{b}{a} W (\sqrt{\tau} \cdot a) \right] \right) \]

\[+ \frac{1}{a-b} \left[W (\sqrt{\tau} \cdot b) - W (\sqrt{\tau} \cdot a) \right] \bigg|_{\xi=0}. \]