Transition in the Floquet Rates of a Driven Stochastic System

L. E. Reichl

Received April 18, 1988

Floquet theory is used to solve the Smoluchowski equation for a time-periodic system whose underlying dynamics exhibits a transition to deterministic chaos. For the stochastic version of this system, an abrupt transition occurs in the Floquet decay rates as parameters of the system are varied, leading to a much more rapid decay to the stationary state.

KEY WORDS: Fokker–Planck equation; Smoluchowski equation; Brownian motion in a potential well; Floquet theory; nonlinear response; driven Brownian particle.

1. INTRODUCTION

It is a great pleasure to contribute to this volume honoring Nico van Kampen, who has probably done more than anyone to bring clarity to the field of stochastic physics. In this paper, I consider a subject which has been a recurrent theme in his work, namely the response of a nonlinear system to a dynamic external field. This problem has become especially interesting because we now know that a nonlinear system coupled to a dynamic field will generally become chaotic as the parameters of the system are varied. A problem that has been little studied but is of growing interest is the behavior of a stochastic system whose underlying dynamics undergoes a transition to chaos. In this paper I consider such a system.

The problem I consider is that of a Brownian particle of mass m and radius R confined to an infinitely deep square-well potential with potential energy $V(x) = 0$ for $0 < x < L$ and $V(x) = \infty$ otherwise. The square well is

1 Center for Statistical Mechanics, University of Texas at Austin, Austin, Texas 78712 (permanent address), and Institute for Nonlinear Science, University of California at San Diego, La Jolla, California 92122.
filled with a fluid with shear viscosity η and the particle is driven by a monochromatic external force $f(t) = \varepsilon \sin(2\pi ft)$, where ε is the amplitude of the force and f is its frequency. The Langevin equation for the particle inside the well is

$$\frac{dv}{dt} = -\beta v + \varepsilon \sin(2\pi ft) - F(t)$$

(1.1)

where β is the Stokes friction, $\beta = 6\pi R\eta/m$, and $F(t)$ is a delta-correlated white noise due to the many degrees of freedom of the fluid. [Note that $\langle F(t) F(t') \rangle = (k_B T/\beta) \delta(t - t')$, where k_B is Boltzmann’s constant and T is the temperature of the fluid. Hydrodynamic memory is neglected.] If no fluid is present, the classical mechanical version of this system$^{(1)}$ undergoes a transition to deterministic chaos in certain regions of the phase space as parameters of the external field are varied.

In this paper, I study the behavior of this stochastic system in the approximation where the friction is very strong so that the velocity relaxes to equilibrium on a time scale short compared to the period of the external field. The behavior of the system is then described by the Smoluchowski equation.$^{(2,3)}$ In Section 2, I write the Smoluchowski equation for the driven system. In Section 3, I use Floquet theory to determine the time evolution of the system, and in Section 4, I obtain the Floquet decay rates of the system.

2. DRIVEN PARTICLE IN AN INFINITE SQUARE WELL

Let us first consider the Smoluchowski equation for a particle confined to an infinitely deep square-well potential in the presence of white noise. The Smoluchowski equation for the particle in the interval $0 < x < L$ is

$$\frac{\partial P(x, t)}{\partial t} = D \frac{\partial^2 P(x, t)}{\partial x^2}$$

(2.1)

where $P(x, t)$ is the probability density of finding the particle at point x at time t, the diffusion coefficient $D = k_B T/m\beta$, and the boundary conditions are

$$\frac{\partial P}{\partial x} \bigg|_{x = 0, L} = 0$$

to ensure that no probability flows through the walls. The solution to Eq. (2.1) takes the form

$$P(x, t) = \sum_{n = 0}^{\infty} c_n e^{-i\lambda_n t} \phi_n(x)$$

(2.2)