Soft X-Ray Emission from a CO$_2$ Laser-Heated Z-Pinch Plasma

J. E. Tucker1 and R. M. Gilgenbach1

Received August 7, 1986; revised February 25, 1987

We report results of soft X-ray measurements in which a high-power ($10^{10}-10^{11}$ W/cm2) CO$_2$ laser was used to heat a near critical density ($<10^{19}$ cm$^{-3}$) helium Z-pinch plasma. Frequency-integrated X-ray data show that the unheated Z-pinch plasma is Maxwellian with a temperature of about 30 eV. During laser heating, the X-ray emissions were enhanced over the unheated emissions. Analysis of the experimental X-ray spectra indicate that the low-energy portion of the X-ray emission spectrum (up to 600 eV) is enhanced over the baseline 30 eV Maxwellian emissions. This result is consistent with an inverse bremsstrahlung-modified distribution which results when the plasma heating rate is more rapid than the collisional thermalization rate. These results suggest that it may be possible to enhance the soft X-ray yield of a plasma lithographic source with laser heating.

KEY WORDS: Laser-heated Z-pinch plasma; helium; soft X-rays; plasma lithography.

1. INTRODUCTION

Soft X-ray sources have a number of important applications ranging from semiconductor processing$^{(1)}$ to X-ray microscopy.$^{(2)}$ Laser-heated targets have provided one source of soft X-rays,$^{(3)}$ whereas the gas-puff Z-pinch is now available commercially for soft X-ray generation. For certain applications it may be desirable to use a laser to control the soft X-ray spectrum from a Z-pinch. While a high-energy tail can be achieved in CO$_2$ laser-solid target interactions,$^{(4)}$ the enhancement of a low-energy soft X-ray component is less straightforward.

In this article we present results of soft X-ray measurements on a CO$_2$ laser-heated helium Z-pinch plasma. Our results show that laser heating of plasmas close to critical densities results in an enhancement of X-ray production in the lower-energy portion of the spectrum. This result is

1Intense Energy Beam Interaction Laboratory, Nuclear Engineering Department, University of Michigan, Ann Arbor, Michigan 48109.
consistent with existing models of inverse bremsstrahlung absorption of laser light.

2. EXPERIMENTAL

2.1. Configuration

This section describes the experimental configurations and diagnostics used to characterize the soft X-ray emission as a function of the electron temperature and density of the Z-pinch plasma, both with and without CO₂.

Fig. 1. Z-pinch configuration.