INDUCTION OF STRESS PROTEINS IN *LEUCONOSTOC OENOS* TO PERFORM DIRECT INOCULATION OF WINE

GUZZO, J., CAVIN, J.F. and DIVIES, C.

Laboratoire de Microbiologie, ENSBANA, Université de Bourgogne
1, Esplanade Erasme, 21000 DIJON, France

SUMMARY

The enhancement or induction of the protein synthesis was clearly observed in cells of *L. oenos* labeled with 35S for five proteins during heat shock at 42°C and acid shock at pH 3. Furthermore, no stress protein was induced after exposure of *L. oenos* to ethanol shock 10% (v/v). Moreover, survival of *L. oenos* in wine and ability to perform malolactic fermentation was improved after direct inoculation when cells were pretreated at 42°C.

INTRODUCTION

Leuconostoc oenos is a lactic acid bacteria used as starter culture for malolactic fermentation (MLF) in wine and cider. The conversion of L-malic acid into L-lactic acid and CO$_2$ deacidifies wine, which leads to a significant influence on its quality and stability (Davis *et al.*, 1985). However, many factors appear to affect this reaction which presently cannot be controlled. This may lead to a number of processing problems, time consuming and risk of alteration of wine. When the MLF is desired, the addition of bacteria is a general practice (Kunkee, 1991) but cells undergo a rapid death due to the harsh environments (pH between 3.0 and 3.5, presence of ethanol and SO$_2$).

It is also becoming clear that exposure to heat, ethanol or acid stress can afford protection against another often unrelated, hostile environment. This adaptative response requires
stress protein synthesis. *Salmonella typhimurium* (Foster *et al*, 1990) and *Escherichia coli* (Goodson and Rowbury, 1989) can become more acid tolerant following exposure to mild acid conditions.

In this paper, the patterns of proteins which are synthesized in *L. oenos* labeled with 35S methionine and 35S cysteine during acid, heat and ethanol stress were examined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Our results suggest that *L. oenos* could be adapted to survive and to grow in wine after direct inoculation if cells were preincubated at 42°C.

MATERIALS AND METHODS

Growth conditions.

The parental stain *L. oenos* Lo 84.13 was used for all experiments (Institut d'Oenologie de Bordeaux, France). *L. oenos* was grown at 30°C in FT 80 medium pH 5.3 (Cavin *et al*, 1989). FT 80 was modified by addition of meat extract instead of casamino acids in order to improve the growth. Methionine assay medium (20g/l) (Difco) supplemented with glucose (5 g/l), fructose (5 g/l), tween 80 (1 g/l) and D-L malate (10 g/l) was used for pulse-labeling experiments (MAM20) and preincubation of bacteria before direct inoculation in wine.

In vivo protein labeling with 35S.

The protein labeling method was carried out according to Guzzo *et al* (1991) with important modifications due to the physiological properties of *L. oenos* (well-known for its low growth rate (0.2 h$^{-1}$) and its complex nutritional requirement (Fourcassie *et al*, 1992)). Bacteria were grown in 10 ml of FT 80 to an optical density of 0.4 at 600 nm. The cells were collected by centrifugation at 6,000 x g for 10 min, washed in MAM20 and resuspended in 1 ml of different mediums for labeling experiments: MAM20, pH 5.3, 30°C; MAM20, pH 3.0, 30°C; MAM20, pH 5.3, 30°C, ethanol 10% (v/v); MAM20, pH 5.3, 42°C. After 10 minutes, labeling was carried out with 10 μCi/ml of Trans 35S label (ICN Biomedicals, Inc) for one hour. All aliquots were centrifuged at 12,000 x g for 10 minutes, and the cell pellets were washed with TE (10 mM Tris HCl, 1 mM EDTA, pH 8).

Sample preparation and gel electrophoresis

The cell pellets were lysed in 60 μl of loading buffer and 25 mg of micro-glass beads. This mixture was vortexed for 30 minutes at room temperature and then boiled for 10 minutes. Samples were analyzed by SDS-PAGE according to Laemmli (1970). The separating gel 12% acrylamide was stained with coomassie blue, dried and autoradiographed.

Preparation of wines in order to test bacterial survival.

Four different wines were prepared using commercial pasteurized red grape juice (L-malic acid (3.5 g/l); fermentescible sugars (145 g/l); pH 3.4). After addition of 1.5 g/l of L-malic acid, four samples of 2.5 l were dispensed into 4 l flasks. Addition of sucrose and adjustment of pH was made (with 2 M tartaric

1190