A criterion for the commutant of a quantized field to be algebraically closed

A. N. Vasil'ev

A necessary and sufficient condition is formulated for the commutant [4-5] of a given quantized field to be algebraically closed (i.e., closed with respect to algebraic operations). If the field satisfies the usual Wightman axioms, the assumption that its commutant is a * algebra implies that this * algebra is abelian.

1. Introduction

This paper continues the author's earlier investigations [4-5]; the concepts and results of these papers will frequently be quoted without additional explanation and the introduction to the present paper will be kept correspondingly brief.

In the investigations [4-5] an attempt was made to construct the theory of representations of a topological (non-Banach) algebra with an involution (called A) by linear operators on a Hilbert space. The value of such an investigation is not merely mathematical since the formalism of the theory of representations is the natural language of Wightman axiomatics [1, 5] and the theory of representations of canonical commutation relations.

We begin with the basic definitions.

We shall say that a * representation R of a * algebra A is defined on a Hilbert space H if every \(a \in A \) is associated with a linear operator \(r(a) \) on \(H \) and the correspondence \(a \rightarrow r(a) \) possesses the following properties (henceforth, we shall omit the asterisk in front of the words "algebra" and "representation"):

1. All the operators \(r(a) \) are defined on one and the same domain \(D_R \) which is linear and dense in \(H \).
2. The domain \(D_R \) is invariant with respect to the operators \(r(a) \):
 \[r(a)D_R \subset D_R, \forall a \in A; \]
3. The correspondence \(a \rightarrow r(a) \) establishes a homomorphism between \(A \) and the set of linear operators on \(H \):
 \[r(\lambda_1 a_1 + \lambda_2 a_2) = \lambda_1 r(a_1) + \lambda_2 r(a_2), r(a_1 a_2) = r(a_1) r(a_2) \]
 for all \(a_1, a_2 \in A \) and all complex numbers \(\lambda_1, \lambda_2 \).
4. There exists a domain \(D \subset D_R \) which is linear and dense in \(H \) and such that all the adjoint operators \(r(a)^* \) are defined on \(D \) and coincide on \(D \) with the operators \(r(a^+) \):
 \[r(a)^*|_D = r(a^+)|_D. \]

If \(r(a)^* \supset r(a^+) \), \(\forall a \in A \), one can take \(D = D_R \); in this case, we shall say that the representation is symmetric. The adjoint of a given representation [we shall call it \(R^* \) and denote its operators by \(r^{(i)}(a) \)] is defined as follows:

\[D_{R^*} = \bigcap_{a \in A} D_{r^{(a)}(a^*)}; \]
r(\(t\))(a) is the restriction to \(D_{R^*}\) of \(r(a^*)\) (it is shown in [4] that the set of operators defined in this manner does indeed form a representation in the sense of the above definition).

If two representations \(R_1, R_2\) are defined on a given Hilbert space \(H\) and \(D_{R_1} \supset D_{R_2},\ r_1(a) \supset r_2(a), \ V a \in A,\) we shall say that \(R_1\) is an extension of \(R_2\) (and write \(R_1 \supset R_2\)).

Let \(R^{**} \equiv (R^*)^*;\) we shall denote the operators of \(R^{**}\) by \(r^{(0)}(a)\). For a symmetric representation \(R \subset R^{**} \subset R^* [4].\) We shall say that a representation is selfadjoint if \(R = R^*\) and essentially selfadjoint if \(R^{**} = R^*\). The narrow commutant \(R_{na}'\) of the representation \(R\) on \(H\) is defined as the set of all bounded operators \(B\) on \(H\) such that

\[
BD_n \subset D_n, B'D_n \subset D'_n. \\
Br(a) \subset r(a)R, B'r(a) \subset r(a)B', \ V a \in A.
\]

The narrow commutant of any representation is an algebra but does not possess any property of being closed.

The commutant \(R'\) of a symmetric representation \(R\) is defined as the set of all bounded operators \(B\) on \(H\) such that

\[
\langle x, Br(a)y \rangle = \langle r(a)x, By \rangle, \ V a \in A; x, y \in D_n.
\]

The commutant \(R'\) of any symmetric representation is closed in the weak operator topology and contains \(R_{na}'\); however, it is not an algebra in the general case; it is closed with respect to operations of addition, multiplication by a number, and taking the adjoint, but it is not closed with respect to the operation of multiplication of two elements, i.e., \(B_1B_2 \in R'\) does not imply \(B_1B_2 \in R'\).

The following results are proved in [4]: the commutant of a selfadjoint and an essentially selfadjoint representation is a weakly closed algebra of bounded operators on \(H\) (a von Neumann algebra) and \(R' = R_{na}'\) for a selfadjoint representation and \(R' = (R^{**})_{na}'\) for an essentially selfadjoint representation.

2. Criterion for the Commutant to be Algebraically Closed

Proposition 1. The commutant \(R'\) of a symmetric representation \(R\) is an algebra if and only if there exists a symmetric extension \(\bar{R} \supset R\) such that \(R' = R' = R_{na}'\).

Proof. The sufficiency is obvious since the narrow commutant of any representation is an algebra. We shall prove the necessity by directly constructing the desired extension \(\bar{R}\).

Thus, suppose that \(R'\) is an algebra. We define \(D_{R'}\) as the linear hull of the set of all vectors of the form \(Bx\) for arbitrary \(B \in R', x \in DR\). Now \(D_{R'}\) is linear by construction and dense in \(H\) since \(D_{R} \supset D_{R'}\) (because \(R'\) always contains the identity operator). On the other hand, \(D_{R'} \subset D_{R'^*}\), since \(BD_{R} \subset D_{R'^*}\) for any \(B \in R' [4]\).

Let \(\bar{r}(a)\) be the restriction of \(r(\(t\))(a)\) to \(D_{R'}\). We wish to show that the set of operators \(\bar{r}(a)\) forms the desired symmetric extension of \(R\).

Let us verify that \(D_{R'}\) is invariant with respect to the operators \(\bar{r}(a)\) (property 2 of a representation). To this end, we use a relation proved in [4]:

\[
r(a)Bx = Br(a)x, \ V a \in A, B \in R', x \in D_{R'^*},\n\]

which can be rewritten for \(x \in D_{R}\) in the form \(r(a)Bx = Br(a)x, \) since \(R^{**} \supset R.\) Therefore, for all \(B_i \in R', x_i \in DR, i = 1, \ldots, n,\) we have

\[
\bar{r}(a) \sum_{i=1}^{n} B_i x_i = r(a) \sum_{i=1}^{n} B_i x_i = \sum_{i=1}^{n} B_i r(a)x_i \in D_{R'},
\]

since \(r(a)x_i \in DR\) by virtue of the invariance of \(DR\) with respect to the operators \(r(a).\) The upshot is \(\bar{r}(a)D_{R} \subset D_{R'} V a \in A,\) as we wished to prove.

Property 3 of a representation is satisfied since \(\bar{R} = \{\bar{r}(a); a \in A\}\) is a restriction of the representation \(R^*.\) It remains to show that property 4 is satisfied. To do this, it is sufficient to show that