\[a = \frac{2m}{\hbar^2} \beta_2 \frac{m}{2\pi \hbar^2} \frac{1}{l} = k_{2z}^2 \sin^2 \theta, \]

\(\theta \) is the angle of incidence of the wave.

The expression, analogous to (11), with \(\varepsilon = 0 \) has the form

\[|\beta|^2 \approx 1 - \frac{(k_{2z})^2}{6\pi} \frac{\beta_2 \cos \theta}{x_2^2}. \]

(13)

In the case of isotropic inhomogeneities, the attenuation of a coherent wave due to noncoherent scattering at inhomogeneities is not as effective as in the case of a laminar inhomogeneous medium.

The authors wish to express their deep gratitude to Yu. A. Kravtsov and S. M. Rytov for their interest in the work.

LITERATURE CITED

Here \(J_\omega(0, 0, 0) \) is the linear density of the charge \(q \) and \(2L \) is the length of the filament (in the final results we shall assume that \(L \to \infty \)). The point of intersection moves with the velocity \((v_x, v_y, 0) \); here \(v_y = v / \tan \phi \) can be made arbitrarily great. We assume that the velocity \(v_x = \omega \cos \phi \) can be made arbitrarily great.

Summing the field of the passing radiation of all the elementary sections of the filament, at sufficiently great distances \(R \gg L \), in the limiting case of an infinitely long filament we obtain the Fourier component of the Hertz vector for \(\omega > 0 \) in a medium with \(\epsilon_i \) (i = 1, 2) in the form

\[
F_{i, 5}(x) = \frac{\pi}{\epsilon_i} \sin \theta_i \sin \phi \frac{\cos \theta + \sin \theta \sin \phi}{\sqrt{1 - (v/c) \sin \theta_i}} \frac{1}{\sqrt{1 - (v/c) \cos \theta_i}} \frac{F_1(\sin \theta \cos \phi) \delta \left[\nabla + \omega \left(\frac{\omega}{c} \right) \cos \theta - 1 \right]}{\ell \sin \theta_i \cos \phi} \]

(3)

in (3) the upper signs correspond to the first index. In the derivation of (2) account was taken of the limit \(\lim_{L \to \infty} \frac{\sin \theta_i}{\pi} = 0 \).

The density of the energy radiated in unit time in a unit interval of frequencies in the solid angle \(d\Omega = \sin \theta d\theta d\phi \) in a medium with \(\epsilon_i \) is equal to

\[
\frac{dW_n}{d\Omega} = \frac{2q^2 \omega}{\epsilon_i c \sin \theta} \left| F_1(\sin \theta \cos \phi) \right|^2 \times
\]

\[
\times \left(\cos \theta + \sin \theta \sin \phi \right) \delta \left(\nabla + \omega \left(\frac{\omega}{c} \right) \cos \theta - 1 \right) \right] d\Omega = \frac{2q^2 \omega}{\epsilon_i c \sin \theta} \left| F_1(\sin \theta \cos \phi) \right|^2 \times
\]

\[
\times \left(\cos \theta + \sin \theta \sin \phi \right) \delta \left(\nabla + \omega \left(\frac{\omega}{c} \right) \cos \theta - 1 \right) \right] d\Omega = \frac{2q^2 \omega}{\epsilon_i c \sin \theta} \left| F_1(\sin \theta \cos \phi) \right|^2 \times
\]

\[
\times \left(\cos \theta + \sin \theta \sin \phi \right) \delta \left(\nabla + \omega \left(\frac{\omega}{c} \right) \cos \theta - 1 \right) \right] d\Omega = \frac{2q^2 \omega}{\epsilon_i c \sin \theta} \left| F_1(\sin \theta \cos \phi) \right|^2 \times
\]

(4)

In (2) and (3), \(J_n(z) \) is a Bessel function of order \(n \). This expression, in the case of the fall of a filament from a vacuum on an ideal conductor, coincides with the result obtained by S. V. Afanas'ev (private communication).

The first term in (4) describes the energy of the radiation by Cerenkov waves; for a sufficiently great velocity \(v > c/\sqrt{\epsilon_i} \), the Cerenkov effect is observed in any arbitrary medium. For \(a = 0 \), the intensity of the Cerenkov radiation is maximal and coincides with the energy of the radiation of a moving superlight source, uniformly and rectilinearly [6]. The dependence of the intensity on the azimuthal angle \(\phi \) is expressed by the formula

\[
\frac{dW_n}{dt} = \frac{2q^2 \omega}{\epsilon_i c \sin \theta} \left(\cos \theta + \sin \theta \sin \phi \right) \left(1 - \frac{\omega^2}{c^2} \right) \left| F_1(\cos \theta \cos \phi) \right|^2 \times
\]

(5)

As can be seen, the Cerenkov radiation density reverts to zero for some frequencies and angles \(\phi \), for which the argument \((\omega/c) \sqrt{\epsilon_i} \sin \theta \sqrt{1 - c^2/v^2} \) is a zero function \(J_n(z) \).

The second term in formula (4) describes the energy of the radiation of an undulator, arising with a given velocity \(v \). The radiation takes place at the Doppler frequencies \(\omega = n\Omega/\ell - (v/c) \sqrt{\epsilon_i} \cos \theta \); with a sufficiently great velocity \(v > c/\sqrt{\epsilon_i} \), an anomalous Doppler effect can, in principle, be observed in any given medium.

The intensity of the radiation at the \(n \)-th harmonic is

\[
\frac{dW_n}{dt} = \frac{2q^2 \omega^2}{\epsilon_i c \sin^2 \phi} \left(\cos \theta + \sin \theta \cos \phi \right) \left| F_1(\cos \theta \cos \phi) \right|^2 \left(\frac{\omega}{c} \right) \sqrt{\epsilon_i} \sin \theta \cos \phi \times
\]

(6)

\[
\left(1 - \frac{\omega^2}{c^2} \right) \left(\frac{\omega}{c} \right) \sqrt{\epsilon_i} \sin \theta \cos \phi \times
\]

\[
\left(1 - \frac{\omega^2}{c^2} \right) \left(\frac{\omega}{c} \right) \sqrt{\epsilon_i} \sin \theta \cos \phi \times
\]