Complete Convergence of Weighted Sums of Martingale Differences

Kai Fun Yu

Received November 1, 1988; revised February 3, 1989

Let $F_0 \subset F_1 \subset \cdots$ be an increasing family of σ-algebras. For each $n \geq 1$, X_n is F_n measurable, and $E(X_n|F_{n-1})$ is zero almost surely, and $E(|E_n|^p|F_{n-1})$ is bounded by a finite constant almost surely for some $p \geq 2$. Let a_{n1}, \ldots, a_{nn} be constants. Conditions are given to establish the complete convergence of

$$\frac{a_{n1}X_1 + \cdots + a_{nn}X_n}{n^{1/p}},$$

thereby obtaining an extension of Chow's (1966) result for the case of independent and identically distributed random variables. When $p > 2$, the conditions are an improvement on existing results for the case of independence and identical distribution.

KEY WORDS: Complete convergence; weighted sums; Martingale differences.

1. INTRODUCTION

Chow\(^{(1)}\) has established the following complete convergence result.

Theorem 1 (Chow\(^{(1)}\)). Let X, X_1, \ldots be independent and identically distributed random variables with $EX = 0$ and $E|X|^p < \infty$ for some $p \geq 2$. Let a_{n1}, \ldots, a_{nn} be constants for each $n \geq 1$ and

$$U_n = \sum_{i=1}^{n} a_{ni}X_i/n^{1/p}$$

If for some finite constant K not depending on n

$$a_{n1}^2 + \cdots + a_{nn}^2 \leq K \quad (1.1)$$

and

$$n^{1/p} \max_{1 \leq i \leq n} |a_{ni}| \leq K \quad (1.2)$$

\(^{(1)}\) Department of Statistics, University of South Carolina, Columbia, South, Carolina 29208.
then for all $\varepsilon > 0$

$$\sum_{i=1}^{\infty} P[|U_n| \geq \varepsilon] < \infty$$

In the same setting as Theorem 1, Thrum\(^{(4)}\) has obtained the almost sure convergence of U_n to zero as n tends to infinity under the mere assumption of the condition (1.1), that is, without assuming the condition (1.2). For the case when $0 < p \leq 2$, Teicher\(^{(3)}\) has obtained the almost sure convergence of U_n to zero under the condition that $(\log n) \max_{1 \leq i \leq n} |a_{ni}| \leq K$. This overlaps with Thrum's theorem when $p = 2$.

Although the almost sure convergence result is interesting in its own right, it is by no means an improvement on Theorem 1. In this note, we shall attempt to strengthen Theorem 1 in two directions. We shall do away with the independence and identical distributions for the random variables X_n, and in their place we shall assume some martingale structure. In the other direction we shall deal with the assumptions on the constants a_{ni}. Specifically we shall prove the following theorem.

Theorem 2. Let $F_0 \subset F_1 \subset \cdots$ be an increasing family of σ-algebras and $\{(X_n, F_n), n \geq 1\}$ be a sequence of martingale differences, that is, for each $n \geq 1$

$$E(X_n | F_{n-1}) = 0, \text{ almost surely}$$

and X_n is F_n-measurable. Assume that for some $p \geq 2$

$$E(|X_n|^p | F_{n-1}) \leq K, \text{ almost surely}$$

where K is a constant not depending on n. For each $n \geq 1$, let a_{n1}, \ldots, a_{nn} be constants and

$$U_n = \sum_{i=1}^{n} a_{ni} X_i / n^{1/p}$$

Assume for some $\delta < 1/p$

$$a_{n1}^2 + \cdots + a_{nn}^2 \leq Kn^\delta \quad (1.3)$$

and

$$\sum_{i=1}^{\infty} \left(\sum_{i=1}^{n} |a_{ni}|^p \right) / n < \infty \quad \text{if} \quad 2 \leq p < 4$$

$$\sum_{i=1}^{\infty} \left(\sum_{i=1}^{n} a_{ni}^p \right) / n < \infty \quad \text{if} \quad p \geq 4 \quad (1.4)$$