ELEMENTARY EXTREMAL SYSTEMS OF THE SELF-OSCILLATORY TYPE WITH AN INERTIAL CONTROLLED ELEMENT

N. N. Leonov

Izvestiya VUZ. Radiofizika, Vol. 9, No. 4, pp. 799-809, 1966

UDC 531.391:62-505.7

An elementary extremal system of the self-oscillatory type with a second-order inertial controlled element is discussed. The usual optimizer, which bases the control signal on analysis of the signs of the input and output first derivatives of the controlled element, is shown to give unsatisfactory results with this system. Ways are suggested for avoiding these drawbacks.

Fig. 1

1. Elementary extremal systems of the self-oscillatory type (with one input and one output) with a member consisting of a nonlinear inertialess element in series with a linear first-order inertial element have been discussed in a number of papers (e.g., [1-3]). Various defects in the operation of the control system have been thereby revealed, leading either to instability or to a poor process of search for the output extremum. It has been discovered that one of the main causes of instability is the existence in the system phase space of regions of sliding motion of the same dimensions as the phase space itself.

In the present paper we consider an elementary extremal system of the self-oscillatory type with a controlled system consisting of a nonlinear inertialess element in series with a linear second-order inertial element. A block diagram of the system is shown in Fig. 1; its equations of motion are

\[\ddot{u} + 2h \dot{u} + \varphi = -u^2, \quad \dot{u} = \varphi(t-\theta), \quad \eta = \Phi[\dot{u}, \varphi]. \]

(1)

where \(h \) and \(\Delta \) are positive parameters, and \(\theta \) is a parameter characterizing the delay in the optimizer. The nonlinear function \(\Phi[\dot{u}, \varphi] \) can be realized by two polarized relays (Fig. 2).

Fig. 2

We show in the present paper that the phase space of system (1) also contains a region of sliding motion of the same dimensions as the phase space itself.

This leads here, not only to possible search instability, but also to a substantial increase in the output extremum tracking error. These defects are inherent in all extremal systems containing an inertial element of higher order than the first. The system discussed here is the simplest type in this class.

Ways of avoiding these drawbacks will be considered.

2. For \(\theta = 0 \) the phase space of system (1) is three-dimensional \((u, \varphi, \dot{\varphi} = \phi)\), generated by two subspaces \(\Phi_{+1} \) and \(\Phi_{-1} \) such \(\eta \) is equal to +1 and -1, respectively, in them. This phase space is the three-dimensional analog of the two-sheeted plane phase space [1-3].

We consider the space \(\Phi_{+1} \). System (1) has no equilibrium states in this space. According to (1), the phase point moves in \(\Phi_{+1} \), till the condition \(\dot{\varphi} + \Delta \Delta = 0 \) is violated. If the phase point reaches the region \(\varphi = -\Delta \) of space \(\Phi_{+1} \), it moves immediately into the space \(\Phi_{-1} \). We denote the plane \(\varphi = -\Delta \) by II. This plane divides \(\Phi_{+1} \) into two parts \(\Phi_{+1}^+ \), where \(\varphi > -\Delta \), and \(\Phi_{+1}^- \), where \(\varphi < -\Delta \).

Fig. 3

It follows from the first equation of system (1) that \(\dot{\varphi} = -\varphi - 2h \varphi - u^2 \). Hence \(\dot{\varphi} \) vanishes on the surface \(\varphi + 2h \varphi + u^2 = 0 \), which we denote by \(F \). The region \(\Phi_{+1}^+ \) divides this surface into two parts: \(\Phi_{+1}^+ \), where \(\dot{\varphi} > 0 \), and \(\Phi_{+1}^- \), where \(\dot{\varphi} < 0 \). The surface \(F \) cuts the plane II along the line \(L(\varphi = -\Delta, \varphi = 2h\Delta - u^2) \), and divides it into two parts: \(\Pi^+ \), where \(\dot{\varphi} > 0 \), and \(\Pi^- \), where \(\dot{\varphi} < 0 \). The phase point travels from the region \(\Pi^+ \) into the region \(\Phi_{+1}^+ \), and from \(\Pi^- \) into \(\Phi_{+1}^- \).

Differentiating the first equation of system (1) with respect to \(t \) and substituting the expression for \(\dot{\varphi} \) in the resulting equation, we find that, with \(\eta = +1 \), \(\dot{\varphi} = 2h \varphi - \varphi (1 - 4h^2) + 2hu^2 - 2u \). The surface \(\Phi_{+1}^+ \) on which \(\dot{\varphi} = 0 \) cuts the surface \(F \) and divides it into two parts: \(F^+ \), where \(\dot{\varphi} > 0 \), through which the phase trajectories enter \(\Phi_{+1}^+ \) from \(\Phi_{+1}^- \), and \(F^- \), where \(\dot{\varphi} < 0 \), through which the phase trajectories depart from \(\Phi_{+1}^+ \) into \(\Phi_{+1}^- \).
The surface ψ_{+1} cuts the line L at the point
\[A \left(\frac{\Delta}{2}, 2\Delta - \frac{\Delta^2}{4}, -\Delta \right). \]

Thus the phase point, having started its movement from the region Π^+ of space Φ_{+1}, enters the region Φ_{+1}^+, passes through Φ_{+1}^{++} and Φ_{+1}^{+++}, and enters the region Π^+, from which it departs into Φ_{-1} (Fig. 3).

It follows from the form of system (I) that the phase trajectories of space Φ_{-1} are symmetrical with the phase trajectories of space Φ_{+1} relative to the plane $u = 0$. The equations of the plane Π and surface F are independent of η. The plane and surface therefore remain unchanged when passing from space Φ_{+1} to space Φ_{-1}; the plane II divides space Φ_{+1} into two parts; Φ_{-1}^+ and Φ_{-1}^-, where $\psi > 0$, and Φ_{-1}^+, where $\psi < 0$. If the phase point starts its movement in the region Π^+ of space Φ_{+1}, it enters the region Φ_{+1}^+ passes through Φ_{+1}^{++} and Φ_{+1}^{+++} and enters Π^+, from which it departs into Φ_{-1}.

We have described above the phase point motion in the part of the phase space where $\phi > -\Delta$. In the part where $\phi < -\Delta$, the phase point cannot travel only in space Φ_{+1}, or only in Φ_{-1}, but moves constantly back and forth between Φ_{+1} and Φ_{-1}. For, from the equations of motion, having entered space Φ_{+1} (or Φ_{-1}), the phase point must immediately pass into space Φ_{-1} (or Φ_{+1} respectively). In other words, the phase point has a sliding motion along the trajectory anywhere in the part of the phase space where $\phi < -\Delta$. The sliding mode trajectories thus fill a three-dimensional region of the phase space.

If the phase point passes from the region $\phi > -\Delta$ to the region $\phi < -\Delta$ of the phase space, and cuts the plane II at a point with coordinate $u = u_1$, it will move along the sliding mode trajectory in accordance with the equation $\phi + 2\Delta \xi + \psi = -u_1$. For, let the relays P_1 and P_2 (Fig. 2) have delays θ_1 and θ_2, and let the phase point, as it moves along a trajectory of space Φ_{+1} (i.e., Φ_{+1} or Φ_{-1}) cut the region Π^+ of the plane at $t = 0$ in the point with coordinate $u = u_1$. After cutting the plane Π^+, the phase point moves for θ_1 units of time along the trajectory of space Φ_{+1}, then the space Φ_{-1}, here, $u(\theta_1) = u_1 + \varphi_1$. The phase point moves then along a trajectory of space Φ_{-1} for θ_2 units of time ($\phi = -\theta_1 + \theta_2$), after which it again passes into space Φ_{+1}; here, $u(\theta_1 + \theta_2) = u(\theta_1) - \phi_2 = u_1 - \phi_2$. After this, the phase point moves for θ_2 units of time in space Φ_{+1}, and so on till it again reaches the plane II. Here, $u(\theta_2 + 2\Delta \xi + \psi) = u_1 - \phi_1$, and $u(\theta_2 + 2\Delta \xi) = u_1 + \phi_2$, ($n = 0, 1, ...$). If θ_1 and θ_2 tend to zero, we find in the limit that, for the sliding mode, $u(t) = u_1$ everywhere in the region $\phi < -\Delta$ of the phase space.

It can easily be shown that the phase point enters the region Π^- of the plane II along a sliding mode trajectory. It is here that the question arises: does it continue along a trajectory of space Φ_{+1}, or of Φ_{-1}. With $\theta_1 = \theta_2 = 0$ there can be no definite answer to this question, since, after it has cut the region Π^-, there is a certain probability of the phase point moving along a trajectory in either of these spaces; Φ_{+1} or Φ_{-1}.

If the delays θ_1 and θ_2 are nonzero, a definite answer can be given. It was shown above, in fact, that with $\phi < -\Delta$ and $\theta > 0$, the phase point moves as follows: if, when it cuts the region Π^-, it was moving along a trajectory of space Φ_{+1}, then θ_1 units of time after cutting Π^- it will be moving along a trajectory of space Φ_{+1}, for θ units it will move along a trajectory of space Φ_{-1}, for θ units again along a trajectory of Φ_{+1}, and so on. Thus the phase point reaches the region Π^+ in this case along a trajectory of each space Φ_{+1} or Φ_{-1}. If it was moving along a trajectory of space Φ_{+1}, for a period not exceeding θ before intersecting the region Π^+, after intersecting Π^+, it will move along a trajectory of space Φ_{-1}.

The time taken by the phase point to travel from the region Π^- to Π^+ depends largely on its initial position in Π^-. It can be shown that the entire region Π^- is divided up by nonintersecting lines, along each of which this time is constant. Similarly, Π^+ is divided up by lines, for each of which the time taken by the phase point to travel from Π^- to Π^+ is constant. The lines of the region Π^- for which the time is equal to $2n \theta + \theta_1$, and $2n \theta + \theta_2 + \theta_2$ ($n = 0, 1, ...$), divide Π^- into a denumerable set of subregions. We denote by Φ_{-1} the subregions for which the phase point traveling time from Π^- to Π^+ is $t \in (0, \theta_1)$, and by Φ_{+1} ($n = 1, 2, ...$) the subregions for which the time $t \in (2n \theta - n + \theta_1, 2n \theta + \theta_2)$, while β_n ($n = 0, 1, 2, ...$) are the subregions for which $t \in (2n \theta + \theta_1, 2n \theta + \theta_2 + \theta_2)$.

If the phase point, after intersecting Π^+, moves along a trajectory of space Φ_{+1}, it will reach the subregions Φ_{+1} along trajectories of space Φ_{-1}, and the Φ_{-1} along trajectories of space Φ_{+1}; further, it will move into the region Π^- along trajectories of space Φ_{+1} from the Φ_{-1}, and along trajectories of space Φ_{-1} from the Φ_{+1}.

It can be shown that the distance along the ϕ axis between the boundaries of each of the regions Φ_{+1} and Φ_{-1} ($n = 0, 1, ..., \theta$) tends to zero as $\theta \to 0$, i.e., these regions degenerate into lines as $\theta \to 0$. Hence follows our above statement that, with $\theta = 0$, no definite answer can be given regarding the behavior of the phase point after it has cut the region Π^+. In actual equipment the delays θ_1 and θ_2 are nonzero. Hence the region n^+, $n > 0$, is divided into subregions Φ_{+1} and Φ_{-1} ($n = 0, 1, ...$). If θ_1 and θ_2 are small, the distances along the ϕ axis between the boundaries of these subregions will also be small. Hence the phase space structure is quite complex in this case, and it is not possible to trace the behavior of the phase point over any substantial period of time. In particular, nothing definite can be said about the existence, nature and stability of the periodic modes of the system. All we can reasonably say is that the modes will be complex and that the system will have low noise immunity because Π^+ is split up into alternating subregions Φ_{+1} and Φ_{-1}. For, let a closed phase trajectory Γ corresponding to a stable periodic mode pass through Φ_{+1}, and let the system by affected by noise which does not take