CLASSIFICATION OF SIMPLE $\mathfrak{sl}(2)$-MODULES AND FINITE-DIMENSIONALITY
OF THE MODULE OF EXTENSIONS OF SIMPLE $\mathfrak{sl}(2)$-MODULES

V. V. Bavula

UDC 512.554+512.664

A classification of simple $\mathfrak{sl}(2)$-modules is carried out, and the finite-dimensionality of $\text{Ext}_{\mathfrak{sl}(2)}(M)$, where M and N are simple $\mathfrak{sl}(2)$-modules is established.

In this paper we give the classification of simple $\mathfrak{sl}(2)$-modules up to prime elements of a certain Euclidean ring, and we prove the finite-dimensionality of the module of extensions of simple $\mathfrak{sl}(2)$-modules. We show that any operator from the universal enveloping algebra, which acts nontrivially (i.e., it is different from the zero operator) on a simple module, has finite-dimensional kernel and cokernel. We compute the module of extensions for a sufficiently wide class of simple modules. We consider a certain series of simple modules which generalizes in a natural manner the Whittaker modules and the Arnal-Pinczon series.

The papers [1-3] are devoted to the study of simple $\mathfrak{sl}(2)$-modules and other closely related problems. In [2] there is given a classification of simple $\mathfrak{sl}(2)$-modules. The approach and classification of the present paper, which differ somewhat of those of [2], are probably more natural. As concerns the module of extensions, some results for the case of weight modules can be found in [4, 5].

1. Classification of Simple $\mathfrak{sl}(2)$-Modules. Let K be an algebraically closed field of characteristic zero. Consider the Lie algebra $\mathfrak{sl}(2, K) = \langle Y, H, X \rangle | [X, Y] = H, [H, X] = 2X, [H, Y] = -2Y \rangle$, and let $U = U(\mathfrak{sl}(2))$ be its universal enveloping algebra, $C = H(H + 2) + 4XY$ the Casimir operator, δ, half the sum of the positive roots, $K(H)$, the ring of rational functions, $\sigma \in \text{Aut} K(H)$, $\sigma(H) = H - 2$. Let $\tau \in K$ be a fixed scalar. We introduce the algebra $A = A_1 = U/U(C - \tau)$. From the Poincaré-Birkhoff-Witt theorem it follows that

$$A = (Y, H, X | XH = (H - 2)X, YH = (H + 2)Y, XY = \sigma(a)),$$

where $a = \frac{1}{4} (\tau - H^2 - 2H)$. (To simplify notation, the elements of U and A will be denoted by the same letters, with no danger of confusion.)

An immediate consequence of (1) is that $A = \bigoplus A_n$ is a graded ring, an integral domain, \mathbb{N}

and a free left and right $K[H]$-module; here $A_0 = K[H]$, $A_n = A_0 X^n$, $A_{-n} = A_0 Y^n$ for n, a positive integer, and $\pi : A \rightarrow A_0$ is the projection onto the first summand, which is a homomorphism of $K[H]$-bimodules. Let $K[H][X^\pm]$; σ denote the ring of skew polynomials in the variables X and X^{-1} with coefficients from the field $K(H)$, i.e., $X^\pm a = \sigma^\pm (a) X^\pm$, for any $a \in K(H)$. Then $K[H][X^\pm]$; σ is a noncommutative Euclidean ring with respect to the "length" map $\xi : \mathbb{Z} \times ((a_0 X^m + \ldots + a_n X^n) = m, m < \ldots < n, a_i \in K(H), a_0 a_n \neq 0$. Let $S = K[H] \setminus \{0\}$ be a closed multiplicative set and let $B = S^{-1} A$ be the corresponding localization of A. The algebra A embeds naturally in B, and in what follows we identify it with its image under this embedding.

Proposition 1. $B \cong K(H)[X^\pm]$; σ.

For the proof it suffices to remark that $X^{-1} = a^{-1} Y$.

On a simple module the Casimir operator acts as a scalar [4]. Unless otherwise stipulated, we shall assume that this action is given by the fixed number $\tau \in K$ for all simple modules considered in this paper.

The module V is called a weight module (generalized weight module) if $V = \bigoplus V_\lambda \implies \lambda \in K$, where $V_\lambda = \text{Ker}(H - \lambda) V$ is the component of V of weight λ (resp., $V = \bigoplus V^\lambda \implies \lambda \in K$, where $V^\lambda = \bigcup_{\lambda > \lambda} \text{Ker}(H - \lambda) V$).
The support \(\text{Supp} V \) of the weight (generalized weight) module \(V \) is defined to be the set of all \(\lambda \in K \), such that \(V_{\lambda} \neq 0 \) (resp., \(V_{\lambda} = 0 \)).

An immediate consequence of the graded decomposition of \(A \) is that the module \(S_{\tau, \theta} = A / A (\theta - 0) \), \(\theta \in K \), is a weight module, of finite length, its support equals \(\theta + 2\mathbb{Z} \), all its nontrivial weight components have dimension 1, and the module is generated by any element whose weight decomposition contains a nonzero component of weight \(\theta \). The module \(S_{\tau, \theta} \) is simple if and only if \(a(\theta + 2n) = 0 \) for all integers \(n \).

Proposition 2. Let \(\mathcal{I} \) be a nonzero left ideal of \(A \), let \(\alpha(H) \) be a generator of the ideal \((\mathcal{I}) \), \(I_n = \mathcal{I} + A (H - 0)^n \), \(\theta \in K \), and \(n \) be a positive integer. Then:

1) \(\mathcal{I} + A (H - 0) \neq A \Leftrightarrow \theta \) is a root of the polynomial \(\alpha(H) \);
2) \(\theta \) is a root of multiplicity \(s \) of the polynomial \(\alpha(H) \), then \(I_n = I_m \) for all \(m \), \(n \geq \).

Proof. 1. \(I_1 \neq A \Leftrightarrow I_1 \) is a proper submodule of \(S_{\tau, \theta} \), where the bar denotes the epimorphism \(A \rightarrow S_{\tau, \theta} \) the support of the module \(I_1 \) does not contain \(\theta \Rightarrow \theta \) is a root of \(\alpha(H) \).

2. Let \(\alpha(H) = (H - 0)^{\beta}(H) \), \(\beta(0) \neq 0 \). Let us show that \(I_{n-1} = I_n \) for all \(n > s \). Consider the epimorphism \(A \rightarrow A (A (H - 0)^{n-1}, y \rightarrow \gamma \). There exists an element \(x = x_0 + x_1 + \ldots + x_t \in \mathcal{I} \), in the graded decomposition of which \(x_0 = \alpha(H) \). Set \(\psi(H) = (H - 0 - 2\beta) \ldots (H - 0)^{N} \). \(\varphi(H) = \beta(0)^{s-1}(\psi(0)^{s-1}(H - 0)^{s-1}\psi(H) \). Then \(\varphi(x) = (H - 0)^{s-1} \in \mathcal{I} \). Therefore, \(I_{n-1} \subseteq I_n \). The proposition is proved.

The classification of simple weight \(s\mathfrak{g}(2) \)-modules is well known [1, 6]. We, however, are interested mainly in non-weight modules.

Proposition 3. Let \(M \) be a simple, non-weight \(A \)-module. Then: 1) \(S_1 \) is a simple \(B \)-module that contains the \(A \)-module \(M \); 2) \(M \cong M_p = A / A \cap Bp \) for some prime element \(p \notin B \), which can be always assumed to belong to \(A \).

Proof. It suffices to remark that every simple \(B \)-module is of the form \(B / pB \), where \(p \) is prime. The proposition is proved.

Proposition 4 (criteria for the simplicity of the module \(M_p \)). Let \(p \notin B \) be a prime element, and let \(\alpha(H) \) be a generator of the ideal \(\pi (A \cap Bp) \). Then the following assertions are equivalent:

1) \(A \cap Bp \) is not a left maximal ideal of \(A \);
2) there is a \(0 \neq \beta \in K \{H\} \), such that \(A \cap Bp + A\beta \neq A \);
3) there is a \(0 \neq \alpha_p \in K \{H\} \), such that \(\pi (A \cap Bp\alpha_p^{-1}) \neq K \{H\} \).

Moreover, \(A \cap Bp + A (H - 0) \neq A \Leftrightarrow \theta \) is a root of the polynomial \(\alpha(H) \).

Proof. 1) \(\Rightarrow \) 2). Suppose \(A \cap Bp \) is strictly included in some left maximal ideal \(\mathfrak{I} \). Since \(Bp \) is a left maximal ideal in \(B \), \(S_1 \) is in \(B / pB \) and \(0 \neq I / K \{H\} \beta \neq 0 \). Then \(A \cap Bp + A\beta \subseteq \mathfrak{I} \neq A \).

Now let \(\beta \) be as in 2). Then in view of the existence of the "length" function \(l \), the element \(\beta \) does not belong to \(A \cap Bp \) for \(l(\beta) = 0 \) and \(l(v) \geq l(\beta) > 0 \) for any \(v \in A \cap Bp \). Consequently, \(A \cap Bp \) is not a left maximal ideal.

2) \(\Rightarrow \) 3). \(A \cap Bp + A\beta \neq A \Leftrightarrow \) there exist \(0 \neq \alpha_p \in K \{H\} \), and \(\lambda \in K \) such that \(\mathcal{I} = A \cap Bp + A\alpha_p (H - \lambda) \). But \(\mathcal{I} \cap L \cong A (A (H - \lambda) + A \cap Bp\alpha_p^{-1}) \), which is in view of Proposition 2 equivalent to the inclusion \(\alpha (A \cap Bp\alpha_p^{-1}) \subseteq A \alpha_p (H - \lambda) \). The proposition is proved.

2. Finite-Length Modules. **Proposition 5.** Any finitely-generated, generalized weight \(A \)-module \(L \) is a finite-length module.

Proof. Clearly, \(L \) is a quotient module of a finite direct sum of modules of the form \(L_n = A / A (H - 0)^n \), \(\theta \in K \), \(n \) a positive integer. Hence, it suffices to show that \(L_n \) is of finite length. If \(n = 1 \), then \(L_1 = S_{\tau, \theta} \) is indeed of finite length. Using the existence of the natural exact sequence \(0 \rightarrow S_{\tau, \theta} \rightarrow L_n \rightarrow L_{n-1} \rightarrow 0 \), the proof can be completed by induction on \(n \). The proposition is proved.

Proposition 6. Let \(p \in B \) be prime and suppose \(J = A \cap Bp \) is not a left maximal ideal of \(A \). Then: