STABILITY OF WEIGHTED DIFFERENCE SCHEMES

N. Yu. Bakaev

Estimates of stability of weighted differences in norms of Banach spaces are constructed. On the basis of these, corresponding estimates of stability in the norms of the spaces C_0 and L_p, $1 \leq p < \infty$, are obtained for difference schemes which approximate an initial-boundary value problem for the heat equation with boundary conditions of the first, second, and third kinds. In addition, the estimates of resolvents of difference elliptic operators in C_0 and L_p, $1 \leq p < \infty$, obtained in this article are used in an essential way.

1. In a family of Banach spaces E_h which depend on some scalar or vector parameter h, we consider the weighted difference scheme

$$
\tau^{-1}|y(t_{k+1}) - y(t_k)| + \sigma A_h y(t_{k+1}) + (1 - \sigma) A_h y(t_k) = F(t_k),
$$

$$
\quad k = 0, 1, \ldots, T/\tau - 1,
$$

$$
y(t_0) = y_0,
$$

where $t_k = k\tau \in [0, T]$ is a discrete argument (T is an upper bound of the variable t_0, and τ is the step of the discretization), $y(t_k)$ is a function of the discrete argument t_k with values in E_h which is a solution of the scheme, $A_h : E_h \to E_h$ is some bounded linear operator (for each fixed h), σ is a numerical parameter called the weight of the scheme which may depend on τ and h, $y_0 \in E_h$ is the initial data of the scheme, and $F(t_k)$ is a known function of the discrete argument t_k with values in E_h, which makes the scheme nonhomogeneous. Weighted difference schemes which approximate initial-boundary value problems for parabolic equations, for example, reduce to schemes of the type (1) if we write them in operator form.

Definition. We will call an operator $A_h : E_h \to E_h$ uniformly v-positive with angle φ, $0 < \varphi < \pi/2$, if for some given function $v(h)$ the bound A_h

$$
\|R(\lambda, A_h)\|_{E_h} \leq C_0 |\lambda|^{-\varphi},
$$

where $\rho_h(\varphi) = \{z : |\arg z| \leq \varphi\}$, $\|\lambda\| \geq \delta_0$, $\|h\| \leq h_0$

on the resolvent of A_h holds for some nonnegative constants C_0, δ_0, and h_0 which do not depend on λ or h, where $\rho_h(\varphi)$ is a rhombus of the form

$$
\rho_h(\varphi) = \{z : |\arg z| \leq \varphi\} \cap \{z : |\arg(v(h) - z)| \leq \varphi\}.
$$

We note that the requirement of uniform v-positivity is somewhat more stringent than the well-known condition of uniform strong positivity [1].

THEOREM 1. If the operator A_h in (1) satisfies the condition of uniform v-positivity with angle φ_0 for some $\varphi_0 \in (0, \pi/2]$, then for $\sigma \geq 1/2 - 1/\tau \nu (h)$ the following estimate of the stability of the scheme (1) holds:

$$
\|y(t_k)\|_{E_h} \leq C_1 \|y_0\|_{E_h}, \quad C_1 = \text{const}, \quad k = 0, 1, \ldots, T/\tau, \quad \|h\| \leq h_0.
$$
In addition, if it is possible to put the constant \(\delta_0 \) in (2) equal to zero, then the constant \(C_1 \) in (3) does not depend on \(T \), which means that (3) is satisfied for \(t_h \in [0, \infty) \), i.e., for \(k = 0, 1, \ldots \).

To prove this theorem, we first consider the case \(\delta_0 = 0 \) and establish that the operator \(\hat{A} \),

\[
\hat{A} = A_h | I + \sigma tA_h |^{-1}
\]

satisfies the \((A_1) \)-condition of [2], from which the corresponding estimate of the stability of the scheme (1) follows. The extension to the case \(\delta_0 \neq 0 \) is trivial in the light of a remark made in [2].

2. We consider a differential operator of the form

\[
[Au](x) = -a(x) \frac{d^2 u(x)}{dx^2} + b(x) \frac{du(x)}{dx} + c(x) u(x), \quad x \in (0, 1)
\]

with variable coefficients \(a(x) \), \(b(x) \), and \(c(x) \), and defined on sufficiently smooth functions \(u(x), x \in [0, 1] \), which satisfy the boundary conditions \(du/dx - \beta_1 u = 0, x = 0 \), and \(du/dx + \beta_2 u = 0, x = 1 \), where \(\beta_1, \beta_2 \gg 0 \) are fixed parameters. For \(0 < \beta_j < \infty \) the boundary condition is a condition of the third kind; for \(\beta_j = 0 \), of the second kind; and for \(\beta_j = \infty \), it passes formally into a condition of the first kind. In what follows, we will assume that \(\beta_j = \infty \). It is obvious that \(x_j = \xi h, \xi = 0, 1, \ldots, N \). We also define the mesh \(\omega_h \) by excluding the boundary mesh points \(x_0 \) and \(x_N \). We consider the following difference analog \(A_h \) of the operator \(A \):

\[
x_j = \xi h, \xi = 0, 1, \ldots, N. \quad \text{We also define the mesh } \omega_h \text{ by excluding the boundary mesh points } x_0 \text{ and } x_N. \quad \text{We consider the following difference analog } A_h \text{ of the operator } A:
\]

\[
\begin{align*}
[A_h y](x) &= \begin{cases}
- \frac{2a(x)}{h} [(\Delta_{-} y)(x) + \beta_1 y(x)] + b(x) [(\Delta_{+} y)(x) + c(x) y(x)], & x = x_0 = 0, \\
- a(x) [(\Delta_{-} y)(x) + \beta_1 y(x)] + b(x) [(\Delta_{1} y)(x) + c(x) y(x)], & x \in \omega_h, \\
2\frac{a(x)}{h} [(\Delta_{-} y)(x) + \beta_1 y(x)] + b(x) [(\Delta_{-} y)(x) + c(x) y(x)], & x = x_N = 1,
\end{cases}
\end{align*}
\]

where \(y(x) \) is a function of the discrete argument \(x \in \omega_h \), the operator \(\Delta_2 \) corresponds to the second difference derivative

\[
[\Delta_2 y](x) = h^{-2} [y(x + h) - 2y(x) + y(x - h)],
\]

the operator \(\Delta_1 \) is the first central difference derivative

\[
[\Delta_1 y](x) = (2h)^{-1} [y(x + h) - y(x - h)],
\]

and the operators \(\Delta_+ \) and \(\Delta_- \) are the first one-sided difference derivatives

\[
\begin{align*}
[\Delta_{+} y](x) &= h^{-1} [y(x + h) - y(x)], \\
[\Delta_{-} y](x) &= h^{-1} [y(x) - y(x - h)].
\end{align*}
\]

If \(\beta_j = \infty \), then we will assume that \([A_h y](x) = 0, x = x_{N+1} = j - 1 \). The operator \(A_h \) defined in (4) arises in difference schemes of the second order in \(h \) (see [3], for example).

We will take as \(E_h \) the space \(C_h \) of mesh functions \(y(x) \) defined on the mesh \(\omega_h \) with norm

\[
\| y(\cdot) \|_{C_h} = \max_{0 \leq j < N} | y(x_j) |
\]

or the space \(L_{p_h} \), \(1 \leq p < \infty \), of mesh functions \(y(x), x \in \omega_h \) with the norm

\[
\| y(\cdot) \|_{L_{p_h}} = \left(\sum_{x \in \omega_h} | y(x_j) |^p h^{|j|} \right)^{1/p}.
\]

If \(\beta_j = \infty \), then we assume that the spaces \(C_h \) and \(L_{p_h} \) consist of functions \(y(x) \) which vanish for \(x = x_{N+1} = j - 1 \).

THEOREM 2. Suppose that the following assumptions concerning the coefficients \(a(x) \), \(b(x) \), and \(c(x) \) are fulfilled: the function \(a(x) \) is real, continuous, and positive on the