GENERALIZED GREEN'S MATRIX FOR LINEAR PULSE BOUNDARY-VALUE PROBLEMS

L. I. Karandjulov

UDC 518; 517.948

We establish an algebraic criterion of solvability, study the structure of general solutions of linear boundary-value problems for systems of differential equations with pulse effects, and construct the generalized Green's matrix.

1. Introduction

Consider a linear system of differential equations

$$\dot{x} = A(t)x + \varphi(t), \quad t \in [a,b], \quad t \neq \tau_i, \quad i \neq 1, p,$$

with pulse effects in the boundary conditions

$$l(x) = \sum_{i=1}^{p+1} l_i(x_i) = h.$$ \hspace{1cm} (2)

Here, the $n \times n$ matrix function $A(t)$ is from $C[a, b]$ and $\varphi(t)$ is an n-vector function with discontinuities of the first kind at $t = \tau_i, \quad i = \overline{1, p}$, i.e.,

$$\varphi(t) = \varphi_i(t), \quad t \in [\tau_{i-1}, \tau_i], \quad i = \overline{1, p+1}, \quad \tau_0 = a, \quad \tau_{p+1} = b.$$

The linear functionals $l_i(x_i)$ are defined in the n-vector space of continuously differentiable functions $x_i(t)$ in $[\tau_{j-1}, \tau_j], \quad i = \overline{1, p+1}$, i.e.,

$$l_i(x_i) \in C^1[\tau_{i-1}, \tau_i] \rightarrow \mathbb{R}^m,$$

and h is an arbitrary m-vector from \mathbb{R}^m.

Difference boundary-value problems obtained as a result depend on the individual form of linear functionals. Thus, multi-point boundary-value problems with p-points of pulse effects can be expressed in terms of the Stieltjes integral

$$l_i(x_i) = \int_{\tau_{i-1}}^{\tau_i} [d\sigma_i(s)] C_i(s)x_i(s), \quad i = \overline{1, p+1}, \quad \tau_0 = a, \quad \tau_{p+1} = b,$$

where $\sigma_i(s) = \text{diag} \left[\sigma_{i1}(s) \ldots \sigma_{inn}(s) \right]$ are diagonal $m \times m$ matrices whose elements are functions of bounded variation in $[\tau_{i-1}, \tau_i]$ and $C_i(s)$ are $m \times n$ matrices whose elements are functions with discontinuities of the first kind at $t = \tau_i, \quad i = \overline{1, p}$.

We study the problem of finding a function

$$x(t) = x_i(t), \quad t \in [\tau_{i-1}, \tau_i], \quad i = \overline{1, p+1}, \quad \tau_0 = a, \quad \tau_{p+1} = b.$$ \hspace{1cm} (3)
with discontinuities of the first kind at \(t = \tau_i, \ i = 1, p + 1 \), such that the vector differentiable functions \(x_i(t) \) satisfy (1) and (2).

System (1), (2) is investigated, e.g., in [1], where boundary conditions are written in the form

\[
C_i x(\tau_i - 0) + D_i x(\tau_i + 0) = d_i, \quad i = 1, p,
\]

\[
\sum_{k=0}^{p+2} A_k x(t_k) = d_{p+1}, \quad t_k \neq \tau_i, \quad i = 1, p, \tag{4}
\]

where \(C_i, B_i, \) and \(A_k \) are \(n \times n \) matrices and the pulse points \(\tau_k \) lie between the points \(t_k \), i.e.,

\[
i_k < \tau_k < t_{k+1}, \quad k = 1, p. \tag{5}
\]

The homogeneous multi-point boundary-value problem corresponding to (1), (4), and (5) possesses a unique trivial solution.

In this paper, the problem posed above is solved by using the methods of half-inverse matrices and generalized Green's matrices. (For the theory of half-inverse matrices, see [2]; the theory of generalized Green's matrices is presented, e.g., in [3-5].)

In [6], the same methods are applied to system (1) with two-point boundary conditions and a single pulse effect in (5).

2. Principal Results

We introduce the following notation: \(\Phi(t) \) is the fundamental matrix of solutions of \(\dot{x} = A(t)x \) such that \(\Phi(a) = I_n, \) \(I_n \) are unit \(n \times n \) matrices, \(l_i(\Phi), \ i = 1, p + 1, \) are \(m \times n \) matrices, \(M = [l_1(\Phi) \ldots l_{p+1}(\Phi)] \) is an \(m \times (p + 1) n \) matrix, and \(M^- = [N_1 N_2 \ldots N_{p+1}]^T \) is an arbitrary half-inverse matrix of \(M, \) where \(N_i, \ i = 1, p + 1, \) are \(n \times m \) matrices.

1. The general solution of (1) has the form

\[
x(t) = \Phi(t)c + \bar{x}(t), \quad c \in E^n, \tag{6}
\]

with the coordinate representation \(\tau_0 = a, \ \tau_{p+1} = b \)

\[
x_j(t) = \Phi(t)\Phi^{-1}(\tau_{j-1})x_j(\tau_{j-1}) + \bar{x}_j(t), \quad t \in [\tau_{j-1}, \tau_j], \quad j = 1, p + 1. \tag{7}
\]

The function \(\bar{x}(t) \) with discontinuities of the first kind is a particular solution of system (1). We choose it in the form

\[
\bar{x}(t) = \int_a^b K(t, s) \varphi(s) ds, \quad s, t \in [a, b], \quad s, t \neq \tau_i, \quad i = 1, p, \tag{8}
\]

where

\[
K(t, s) = \frac{1}{2} \Phi(t) \Phi^{-1}(s) \text{sign}(t - s),
\]

\[
t, s \in [a, b], \quad t, s \neq \tau_i, \quad i = 1, p.
\]