It is known [8] that for sufficiently large \(\lambda \) a.s.

\[
\lim_{n \to \infty} \sum_{i=1}^{n} a_i \varepsilon_i (B_n^2 \ln \ln B_n^2)^{\gamma/2} > 0,
\]

(19)

\[
B_n^2 = \sum_{i=1}^{n} a_i^2 \sim (2\lambda)^{-1} \exp (2\lambda n / \ln n),
\]

\[
B_n^2 \ln \ln B_n^2 \sim (2\lambda)^{-1} \exp (2\lambda n / \ln n) \ln n \sim \frac{\lambda}{2} A_n^2.
\]

(20)

Relations (19), (20) contradict Eq. (1); thereby Theorem 3 is proved.

Remark. Mourier [9], using the strong law of large numbers in \(\mathbb{R}^3 \), proved that a similar assertion holds also in a separable Banach space. The analysis of this proof shows that it is transferred without essential changes to weighted Riesz sums. Therefore, Proposition 1 and Theorems 1-3 will be valid for sequences of independent identically distributed random elements in separable Banach spaces.

LITERATURE CITED

1. V. V. Petrov, Sums of Independent Random Variables [in Russian], Nauka, Moscow (1972).

POSITIVE SEMICHARACTERS AND THE LAPLACE TRANSFORM

A. R. Mirotin

It is shown that the image of the conical semigroup \(S \) under the natural mapping of it to its second semigroup of positive semicharacters \(\hat{S}_+ \) is a total subset of the space of continuous functions on \(\hat{S}_+ \) approaching zero at infinity. This allows one to establish a number of properties of the semigroup \(\hat{S}_+ \) and of the Laplace transform of measures on it.

In the treatise [1] (Chap. IX, Sec. 5) there is considered, in particular, the Laplace transform of measures on a semigroup \(M \) under certain conditions on the semigroup of its semicharacters. It follows from Theorem 1 of this paper that these conditions are satisfied if \(M \) is a semigroup of nonnegative semicharacters of a conical semigroup (see the definitions below). The properties (somewhat modified) stemming from this fact due to the results from [1] of the Laplace transform allow one to more deeply study the semigroup of nonnegative semicharacters and obtain the internal characteristic of the Laplace transform of a complex meas-
Everywhere below G is a locally compact abelian group with an identity e, S is an open subsemigroup of G, for which e is a point of tangency (in [4] such semigroups are called conical). By a semicharacter of the semigroup S we will mean a nontrivial continuous homomorphism of this semigroup to the unit disk with the operation of multiplication of complex numbers. By \widehat{S} let us denote the set of all semicharacters of S, equipped with the topology of uniform convergence on compact subsets of S, and by S_+ the subspace of this space consisting of nonnegative semicharacters. The space \widehat{S}_+ is locally compact as a closed subset of the space \widehat{S} of maximal ideals of the algebra $L^1(S)$ [5]. Furthermore, \widehat{S}_+ is a semigroup with respect to pointwise multiplication. This follows from Lemma 1 of this paper. For $\rho \in \widehat{S}_+$, let $S(\rho) = \{ t \in S : \rho(t) > 0 \}$, and let $G(\rho)$ be the subgroup of G generated by $S(\rho)$. Then $G(\rho)$ is open-closed in G, and $S(\rho)$ is an open-closed subsemigroup of the semigroup S, since $S(\rho) = G(\rho) \cap S$. The complement $N(\rho) = S \setminus S(\rho)$ is an open-closed ideal of S. Let $S_1 = S \cup \{e\}$. Finally, let $\hat{e}(\rho) = \rho(t)$ for $t \in \widehat{S}$, $\hat{e}(\rho) = 1$.

1. The Basic Theorem. At the base of the subsequent considerations lies the following result.

THEOREM 1. The family $\{ \hat{f} : \hat{f} \in \widehat{S} \}$ is total in the space $C_0(\widehat{S}_+)$ of continuous functions on \widehat{S}_+ approaching zero at infinity.

Let us preface the proof of Theorem 1 by two lemmas.

LEMMA 1. Each semicharacter $\rho \in \widehat{S}_+$ is continued in a unique manner to a continuous homomorphism ρ of the group $G(\rho)$ to the multiplicative semigroup \mathbb{R}^+ of nonnegative real numbers.

Proof. For $s, t \in S(\rho)$ let $\rho(st^{-1}) = \rho(s)/\rho(t)$. The correctness of this definition is easily verified. It is also evident that $\overline{\rho}$ is a homomorphism. Let us prove its continuity. Let $x_0 \in G(\rho)$. There is $t_0 \in S(\rho)$, such that $s_0 = t_0 x_0 \in S(\rho)$. For $\varepsilon > 0$ there is a neighborhood U_0 of the point s_0, such that $|\rho(s) - \rho(s_0)| < \varepsilon \rho(t_0)$ for $s \in U_0$. Let us consider $U = t_0^{-1} U_0$. This is a neighborhood of the point x_0 and for $x \in U$ ($x = t_0^{-1} s$, where $s \in U_0$) we have

$$|\rho(x) - \rho(x_0)| = |\rho(s) - \rho(s_0)|/\rho(t_0) < \varepsilon,$$

which in fact completes the proof of the lemma.

LEMMA 2. For any $\Lambda \subset \widehat{S}_+$ the set $\Lambda \cap \{ S(\rho) : \rho \in \Lambda \}$ is open and in the case of nonemptiness contains the intersection $\Lambda \cap S$ for some neighborhood U of the identity of the group G.

Proof. Let us assume that $t \in \Lambda \cap \{ S(\rho) : \rho \in \Lambda \}$. Then $\Lambda = S \setminus \Lambda \cap \{ S(\rho) : \rho \in \Lambda \} = \bigcup \{ S(\rho) : \rho \in \Lambda \} = \Lambda \cup N(\rho)$. If one assumes that e is a point of tangency for N, then $S^{-1} \cap N = \emptyset$. Therefore, there are $s \in S$, $a \in N$, such that $t = as \notin N$. Consequently, there exists a neighborhood U of the point e such that $U = \emptyset$. Therefore, $U \cap S$ is a nonempty open subset of $\Lambda \cap \{ S(\rho) : \rho \in \Lambda \}$. Let then the subgroup $H = \bigcap \{ G(\rho) : \rho \in \Lambda \}$ of the group G is open. It remains to observe that $\bigcap \{ S(\rho) : \rho \in \Lambda \} = H \cap S$.

Proof of Theorem 1. Let us observe that the functions \hat{f} are continuous on \widehat{S}_+. If the space \widehat{S}_+ is compact, then, evidently, the Weierstrass-Stone Theorem is applicable to the family $\{ \hat{f} : \hat{f} \in \widehat{S} \} \subset C(\widehat{S}_+) = C_0(\widehat{S}_+)$. We will further assume that \widehat{S}_+ is not compact. Let us fix $t \in S$ and show that $\hat{t} \in C_0(\widehat{S}_+)$. Let the direct $(p_x : \alpha \in A) \subset \widehat{S}_+$ approach infinity in \widehat{S}_+. Let $A' = \{ \alpha : \exists \alpha \in A \}$. Let us consider the following two cases.

1. There exists $\alpha_0 \in A$, such that $\alpha \leq \alpha_0$, for all $\alpha \in A'$. Then $\lim_{\alpha \in A} \hat{f}(p_\alpha) = 0$.

2. Such an α_0 does not exist. This means that $(p_\alpha : \alpha \in A')$ is a subdirection of the initial direction. Let us show that in this case $\lim_{\alpha \in A} \hat{f}(p_\alpha) = 0$. Let $H = \bigcap \{ G(\rho) : \alpha \in A' \}$. By Lemma 2 H is an open subgroup of G. As is known [6], H contains an open subgroup of the form $\mathbb{R}^n \times F$, where $n \in \mathbb{Z}_+$, and the group F is compact.