POINTS OF STRONG SUMMABILITY OF FOURIER SERIES

O. D. Gabisoniya

The points of a function \(f \in L \) at which there are given estimates of the rate of convergence to zero of the strong arithmetic means of its Fourier series and the trigonometrically conjugate series are characterized.

Suppose \(f \) is a \(2\pi \)-periodic, \(p \)-th power integrable \((p \geq 1) \) function on \(\Delta = [-\pi, \pi] \), \(f \in L_p \), and \(S_n(f; x) \) is the partial sum of order \(n \) of its Fourier series.

The concept of the strong summability of Fourier series was introduced by Hardy and Littlewood [1]. We say that the Fourier series of a function \(f \in L_1 \) is \((H, q)\)-summable at a point \(x \) to \(f(x) \) if

\[
\lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} |f(x) - S_n(f; x)|^q = 0, \quad q > 0.
\]

In [2] Hardy and Littlewood showed that if \(f \in L_p, \ p > 1 \), then at each Lebesgue point \(x \) of degree \(p \), i.e., at a point \(x \) where

\[
\frac{1}{\delta} \int_{\delta}^{h} |f(x \pm t) - f(x)|^p \, dt = o(1),
\]

the equality (1) holds for any \(q > 0 \). Thus, the Fourier series of a function \(f \in L_p, \ p > 1 \), is \((H, q)\)-summable almost everywhere. They also showed there exists a function \(f \in L_1 \) whose Fourier series need not be \((H, q)\)-summable at a Lebesgue point for any \(q > 0 \).

Hardy and Littlewood posed this problem: Does (1) hold almost everywhere if \(f \in L_1 \)? This problem was solved affirmatively for \(q = 2 \) by Marcinkiewicz [3], and for any \(q > 0 \) by Zygmund [4]. But the question of characterizing the points of \((H, q)\)-summability of Fourier series for \(f \in L_1 \) remained open. In 1973 (see [5]) we characterized the points of \((H, 2)\)-summability of Fourier series for \(f \in L_1 \), i.e., we showed that for any summable function \(f \in L_1 \), \((H, 2)\)-summability of Fourier series holds at all points \(x \) such that

\[
\lim_{n \to \infty} \frac{1}{n+1} \sum_{\nu=1}^{\lfloor zn \rfloor} \left\{ \frac{1}{\nu} \int_{\nu-1/n}^{\nu} |f(x + t) - f(x)| + |f(x - t) - f(x)| \, dt \right\} = 0, \quad \gamma = 2,
\]

where \([z]\) denotes the integral part of \(z \).

It was established in the same paper that (3) holds almost everywhere for any integrable function \(f(x) \) when \(\gamma > 1 \).

Later Novikov and Rodin [6] showed that \((H, q)\)-summability holds at points \(x \) where (3) is satisfied when \(1 < \gamma = p < 2 \) and \(p + q = pq \).

The equality (3) can be written in the equivalent form

\[
\lim_{n \to \infty} \sum_{\nu=1}^{\lfloor zn \rfloor} \frac{1}{\nu} \int_{\nu-1/n}^{\nu} |f(x \pm t) - f(x)| \, dt = 0,
\]

or

\[
\lim_{n \to \infty} \sum_{\nu=1}^{\lfloor zn \rfloor} \frac{1}{\nu} \int_{\nu-1/n}^{\nu} |f(x + t) - f(x)| \, dt = 0.
\]
It is known [7, p. 488] that \((H, q)\)-summability implies \((H, q')\)-summability for \(0 < q' < q\); hence it suffices to investigate \((H, q)\)-summability for large \(q\).

In the present paper we obtain an estimate for the rate of convergence to zero of the quantities
\[
\frac{1}{n+1} \sum_{\nu=0}^{n} |f(x) - S_{\nu}(f; x)|^q, \quad q > 0,
\]
\[
\Gamma_n(f; x, p) = \left\{ \sum_{k} \left(\frac{n+1}{|k|+1} \int_{\Delta_k^{(n)}} |f(x+t) - f(x)| \, dt \right)^{1/p} \right\}^{1/p},
\]
from which follow all of the above-mentioned results.

where \(\Delta_k^{(n)} = \left[\frac{\pi k}{n+1}, \frac{\pi (k+1)}{n+1} \right] \cap \Delta \), and \(\sum_{k} \), here and in what follows, signifies that the summation has the limits \(-(n+1) \leq k \leq n\).

We will give some properties of the \(\Gamma_n(f; x, p)\).

Property 1 [5]. If \(f \in L_1\), then for any \(p > 1\) we have almost everywhere
\[
\lim_{n \to \infty} \Gamma_n(f; x, p) = 0.
\]

Property 2. If \(f(x)\) is a continuous function with modulus of continuity \(\omega(f; \delta)\), then
\[
\Gamma_n(f; x, p) \leq 2\pi C_p \omega(f; \frac{1}{\sqrt{n+1}}), \quad \left(C_p = \left\{ \sum_{k} \left(\frac{|k|+1}{n+1} \right)^{-p} \right\}^{1/p}, \quad p + q = pq \right).
\]

Indeed,
\[
\Gamma_n(f; x, p) \leq \left\{ \sum_{k} \left(\frac{n+1}{|k|+1} \int_{\Delta_k^{(n)}} \omega(f; t) \, dt \right)^{1/p} \right\}^{1/p} \leq \left\{ \sum_{k} \left(\frac{n+1}{|k|+1} \omega(f; n+1)^{-1/q} \right) \times \int_{\Delta_k^{(n)}} \omega(f; t) \, dt \right\}^{1/p} \leq \omega(f; (n+1)^{-1/q}) \left\{ \sum_{k} \left(\frac{n+1}{|k|+1} \times \left(\frac{|k|+1}{n+1} \frac{\pi}{n+1} + \frac{\pi}{n+1} \right)^{1/p} \right) \right\}^{1/p} \leq 2\pi C_p \omega(f; (n+1)^{-1/q}), \quad p > 1,
\]
as required.

Property 3. If \(f \in \text{Lip}_{q} \alpha, 0 \leq \alpha < 1/q\), then
\[
\Gamma_n(f; x, p) \leq MC_{q-\alpha/p} (n+1)^{-\alpha} = O((n+1)^{\alpha}).
\]

Indeed, for \(f \in \text{Lip}_{q} \alpha\) we have \(|f(x+t) - f(x)| \leq M |t|^{\alpha}; \) hence
\[
\Gamma_n(f; x, p) \leq \left\{ \sum_{k} \left(\frac{n+1}{|k|+1} \frac{M (|k|+1)^{\alpha} \frac{\pi}{n+1}}{n+1} \right)^{1/p} \right\}^{1/p} = M (n+1)^{-\alpha} \left\{ \sum_{k} \left(\frac{|k|+1}{|k|+1} \frac{\pi}{n+1} \right) \right\}^{1/p} \leq MC_{q-\alpha/p} (n+1)^{-\alpha}, \quad (1-\alpha) p > 1,
\]
as required.

Property 4. If \(f \in L_p \ (p > 1)\), then (7) holds at all Lebesgue points \(x\) of degree \(p\).

Proof. Suppose \(x\) is a Lebesgue point of degree \(p\). By Hölder's inequality,
\[
\int_{\Delta_k^{(n)}} |f(x+t) - f(x)| \, dt \leq \left(\frac{\pi}{n+1} \right)^{\alpha} \left\{ \int_{\Delta_k^{(n)}} |f(x+t) - f(x)^p \, dt \right\}^{1/p}, \quad p + q = pq.
\]

Therefore,