INTEGRATION OF A SINGULARLY PERTURBED DEGENERATE LINEAR SYSTEM

I. I. Starun and M. I. Shkil

We present a method for finding a solution of a linear homogeneous system with degenerate matrix and a small parameter with the derivative.

1. Consider the system

\[\varepsilon^h B(t) \dot{x} = A(t, \varepsilon)x, \]

where \(A(t, \varepsilon) = \sum_{s \geq 0} \varepsilon^s A_s(t) \), \(B(t) \) are \((n \times n)\) matrices, \(t \in [t_0, T] \), \(0 < \varepsilon \leq \varepsilon_0 < 1 \), \(\det B(t) \equiv 0 \), and the pencil of matrices \(A_0(t) - \lambda B(t) \) is regular.

Note that if \(\det B(t) \neq 0 \) for \(t \in [t_0, T] \), then system (1) has a general solution of the form

\[x(t, \varepsilon) = R(t, \varepsilon) \exp \left(\int_{t_0}^{t} \Lambda(\tau, \varepsilon) d\tau \right) c, \]

where \(R(t, \varepsilon) \) and \(\Lambda(t, \varepsilon) \) are \((n \times n)\) matrices and \(c \) is a constant \(n \)-dimensional vector. In this case, if the characteristic equation

\[\det (A_0(t) - \lambda B(t)) = 0 \]

has simple roots, then

\[R(t, \varepsilon) = \sum_{s=0}^{\infty} \varepsilon^s R_s(t), \]

\[\Lambda(t, \varepsilon) = \sum_{s=0}^{h-1} \varepsilon^s \Lambda_s(t) = \text{diag} \{ \lambda_1(t, \varepsilon), \ldots, \lambda_n(t, \varepsilon) \}. \]

If Eq. (3) has multiple roots associated with multiple elementary divisors, then, in (4), we have an expansion in fractional powers of \(\varepsilon \).

System (1) was first considered for \(\det B(t) \equiv 0 \) in [1]; it was shown that if Eq. (3) has \(r_1 \) simple roots \(\lambda_i(t) \), \(i = 1, r_1 \), \(1 \leq r_1 < n \), then system (1) has \(r_1 \) particular solutions of the form

\[x_k(t, \varepsilon) = \varphi_k(t, \varepsilon) \exp \left(\int_{t_0}^{t} \omega_k(\tau, \varepsilon) d\tau \right), \quad k = 1, r_1, \]
where

$$\varphi_k(t, \varepsilon) = \sum_{s=0}^{\infty} \varepsilon^s \varphi_k^{(s)}(t), \quad \omega_k(t, \varepsilon) = \lambda_k(t) + \sum_{s=1}^{h-1} \varepsilon^s \omega_k^{(s)}(t).$$

If Eq. (3) has an r_1-multiple root $\lambda_0(t)$ associated with multiple elementary divisors, then system (1) also has r_1 particular solutions of the form (5) with expansions in fractional powers of ε. The problem of existence of other solutions of system (1) remained open for a long time. This problem was completely solved in [2]. In the present paper, we show that, under certain conditions, in addition to solutions of the form (5) with

$$\omega_k(t, \varepsilon) = \sum_{s=0}^{\infty} \varepsilon^s \omega_k^{(s)}(t)$$

(which are called solutions of the first type), there exist solutions of the second type, namely,

$$x(t, \varepsilon) = \left(\sum_{s=0}^{\infty} \mu^s v^{(s)}(t) \right) \exp \left(\varepsilon^{-h} \int_{t_0}^{t} \eta^{-1}(\tau, \mu) d\tau \right),$$

(6)

where

$$\eta(t, \varepsilon) = \sum_{s=0}^{\infty} \mu^s \eta^{(s)}(t), \quad \mu^m = \varepsilon,$$

and m is a certain integer. As shown in [2], solutions of this or another form are determined by elementary divisors of the matrix pencil $A_0(t) - \lambda B(t)$. Namely, solutions of the form (5) correspond to “finite” elementary divisors, while solutions of the form (6) correspond to “infinite” elementary divisors.

It is shown in [3] that if the roots of Eq. (3) and all elementary divisors of the pencil $A_0(t) - \lambda B(t)$ preserve constant multiplicity on $[t_0, T]$, then there exists a pair of nonsingular matrices $P(t)$ and $Q(t)$ that reduces the pencil to the canonical form

$$P(t)(A_0(t) - \lambda B(t))Q(t) = \Omega(t) - \lambda H,$$

(7)

$$\Omega(t) = \begin{pmatrix} W(t) & 0 \\ 0 & E_2 \end{pmatrix}, \quad H = \begin{pmatrix} E_1 & 0 \\ 0 & I \end{pmatrix},$$

(8)

where $W(t) = \text{diag} \{ \lambda_1(t), \ldots, \lambda_{r_1}(t) \}$ in the case of simple roots of Eq. (3) or it is a Jordan $(r_1 \times r_1)$ matrix, E_1 and E_2 are identity matrices of dimensions r_1 and $r_2 = n - r_1$, respectively, and I is a nilpotent Jordan matrix determined by “infinite” elementary divisors of the pencil $A_0(t) - \lambda B(t)$.

Taking (8) into account, one can conclude that solutions (5) are determined by the pair $(W(t), E_1)$, and solutions (6) are determined by (E_2, I).

Furthermore, it is shown in [2] that if rank $B(t) = r_1$, i.e., the “rank--degree” condition [4] is satisfied, then system (1) has only solutions of the form (5). Therefore, we can represent the general solution in the form (2), where $R(t, \varepsilon)$ and $\Lambda(t, \varepsilon)$ are $(n \times r_1)$ and $(r_1 \times r_1)$ matrices, respectively, and c is an r_1-dimensional vector. If rank $B(t) = r > r_1$, then solutions of the form (6) appear. If Eq. (3) has no roots, i.e.,

$$\det (A_0(t) - \lambda B(t)) = \det A_0(t) \neq 0,$$

(9)