BRIEF COMMUNICATIONS

ON MAJORANTS IN THE HARDY–LITTLEWOOD THEOREM
FOR HIGHER DERIVATIVES

V. I. Gorbaichuk and O. M. Piddubnyi

We establish conditions for majorants under which the classical Hardy–Littlewood theorem for the class of functions analytic in a disk is true in terms of derivatives of arbitrary fixed order.

Denote by D a unit disk in the complex plane C. As in [1], we say that an increasing function $\lambda(t) : [0, \infty) \to [0, \infty)$, $\lambda(0) = 0$, is a majorant if $\lambda'(t)$ decreases. Other definitions of majorant can be found in [2–5].

Let $f : D \to C$ and let $\lambda(t)$ be a majorant. We write $f \in \text{Lip}_\lambda(D)$ if one can find a constant $M < \infty$ such that $|f(z_1) - f(z_2)| \leq M\lambda(|z_1 - z_2|)$ for all $z_1, z_2 \in D$. By $\|f\|_\lambda$ we denote the infimum of all such M.

In the notation introduced above, the classical Hardy–Littlewood theorem can be formulated as follows: If f is analytic in D, $\lambda(t) = t^\alpha$, $0 < \alpha \leq 1$, and $f \in \text{Lip}_\lambda(D)$, then there exists a constant $A > 0$ such that

$$|f'(z)| \leq A\lambda'(1-|z|)$$

(1)

for all $z \in D$; the constant A depends only on α and $\|f\|_\lambda$ [6, 7]. In [1], it was proved that relation (1) is equivalent to the condition

$$\limsup_{t \to 0^+} \frac{\lambda(t)}{t\lambda'(t)} < \infty.$$

The following problem arises: Under what conditions imposed on the majorant does the corresponding result [1] remain true for higher derivatives of f? We solve this problem by introducing regularly monotone majorants. A real function is called regularly monotone on a certain interval if this function and all its derivatives preserve their signs on this interval [8]. A majorant is called regularly monotone in the interval $(0, \infty)$ if $\lambda^{(k)}(t) \neq 0$ and $|\lambda^{(k)}(t)|$ decreases for $t > 0$ and $k = 1, 2, \ldots$.

Theorem 1. For $k = 1, 2, \ldots$, the following statements are equivalent:

(i) If f is analytic in D, $\lambda(t)$ is a regularly monotone majorant of this function on the interval $(0, \infty)$, and $f \in \text{Lip}_\lambda(D)$, then there exists a constant $A > 0$ depending only on λ and $\|f\|_\lambda$ such that the following estimate holds for all $z \in D$:

$$|f^{(k)}(z)| \leq A|\lambda^{(k)}(1-|z|)|$$

(2)
(ii) for a regularly monotone majorant \(\lambda(t) \) of a function \(f \) analytic in \(D \), the following relation is true:
\[
\limsup_{t \to 0^+} \frac{\lambda(t)}{t^k |\lambda^{(k)}(t)|} < \infty.
\] (3)

Remark. In the case \(k = 1 \), we arrive at Theorem 1.3 in [1].

Proof of Theorem 1. For simplicity of analytic calculation, we prove Theorem 1 for \(k = 2 \). In the general case, the proof is analogous.

First, we prove that statement (ii) implies statement (i). If relation (3) holds, then there exist positive constants \(t_0 \) and \(C_0 \) such that
\[
\lambda(t)t^{-2} \leq C_0 |\lambda''(t)|, \quad t \in (0, t_0).
\] (4)

Inequality (4) also holds for all \(t \in (0, 1] \) if the constant \(C_0 \) is replaced by the constant \(C_1 = \max \{ C_0, \lambda(t_0)t_0^{-2}|\lambda''(t)|^{-1} \} \). We fix \(z \in D \) and set \(0 < R < 1 - |z| \). Since \(f \in \text{Lip}_\lambda(D) \), by using the integral Cauchy formula and condition (4), we get
\[
|f''(z)| = \left| \frac{1}{\pi i} \int_0^{2\pi} \frac{f(z + R e^{i\theta}) - f(z)}{R^3 e^{3i\theta}} R e^{i\theta} i d\theta \right| \leq 2C_1 \|f\|_{\lambda, |\lambda''(R)|}.
\]

Passing to the limit as \(R \to 1 - |z| \) in the last inequality, we establish (2) for \(k = 2 \).

We prove that statement (i) implies statement (ii) by contradiction. For this purpose, we assume that (3) is not valid and show that there exists a function \(f \in \text{Lip}_\lambda(D) \) for which statement (i) is not true. Since, by assumption,
\[
\limsup_{t \to 0^+} \frac{\lambda(t)}{t^2 |\lambda''(t)|} = +\infty,
\]
there exists a monotonically decreasing sequence \(\{t_j\}_{j=1}^\infty \) of values of the argument \(t \in (0, 1] \) for which
\[
\frac{\lambda(t_j)}{t_j^2 |\lambda''(t_j)|} \geq 2^{3j}, \quad j = 1, 2, \ldots.
\] (5)

We define a function \(f(z) \) analytic in \(D \) by setting
\[
f(z) = \sum_{j=1}^{\infty} a_j z^{n_j},
\] (6)
where \(a_j = 2^{-j} \lambda(t) \) and \(n_j \) is the integer part of a positive number \(t_j^{-1} \). One can easily verify that this series has the unit circle of convergence. Let us show that the function \(f \) thus constructed belongs to \(\text{Lip}_\lambda(D) \). The following estimate holds for \(l = 0, 1, 2, \ldots \) and arbitrary \(z_1, z_2 \in D \):
\[
|z_1^l - z_2^l| \leq \min \{ 2, l |z_1 - z_2| \}.
\] (7)

By setting \(t = |z_1 - z_2| \) and using (7), we obtain the estimate