Let us consider the system of equations

\[\frac{dx}{dt} = A(t)x + g(t, x), \quad t \neq t_p, \]

\[\Delta x|_{t=t_p} = I_i(x), \]

where the functions \(g(t, x) \) and \(I_i(x) \) satisfy inequalities (11). Then, as a particular case of Theorem 4, we can formulate the following theorem.

THEOREM 5. Let the matrix \(A(t) \) satisfy the condition

\[\| A(t) - A(s) \| \leq a(t - s), \quad a > 0, \quad t > s. \]

Also let \(\max \Re \lambda_j(A(t)) < \gamma_0. \) If \(\gamma_0 < 0, \) then for sufficiently small \(a \) and \(\bar{a} \) the zero solution of system of equations (10) is asymptotically stable provided the functions \(g(t, x) \) and \(I_i(x) \) satisfy inequalities (11).

LITERATURE CITED

PARAMETRIC RESULTS FOR CERTAIN INFINITE-DIMENSIONAL MANIFOLDS

T. O. Banakh

UDC 515.12

The theory of \(R^{\tau}, Q^{\tau} \) manifolds is generalized in two directions. Firstly, an axiomatic approach is proposed to describing various classes of manifolds (so-called \(K^{\tau} \)-manifolds) including, along with the indicated classes of \(R^n \) and \(Q^n \)-manifolds, also, e.g., the manifolds modeled on the space \((f^\tau) = \lim(f^n), \) where \(\tau \) is a cardinal. Secondly, all the arguments were carried out in the category \(\text{Top}_B \), which makes it possible to carry over from spaces to maps practically all basic results of the theory of \(R^{\tau}, Q^{\tau} \)-manifolds. Specifically, there are obtained characterization theorems for trivial and microtrivial \(K^{\text{lin}} \)-fibrations, theorems on open and closed embeddings, stability theorems, etc.

Basic Notations and Terms. By \(I \) the closed interval \([0, 1]\) is denoted, \(Q = [-1, 1]^\omega \) is a Hilbert parallelootope, \(\Gamma^\tau \) is the Tikhonov cube of weight \(\tau > \omega; R^{\tau} = \lim(R^n, i_n) \) where the embeddings \(i_n: R^n \to R^{n+1}, n \to 1, \) are defined by the formula \(i_n(x_1, \ldots, x_n) = (x_1, \ldots, x_n, 0), (x_1, \ldots, x_n) \in R^n. \) The spaces \(Q^{\tau} = \lim Q^n \) and \((f^\tau) = \lim(f^n), \) \((\tau > \omega \) is a cardinal\) are defined analogously. In all the above spaces, \(0 \) raised to the respective power is regarded as the distinguished element.

In what follows all the maps are assumed to be continuous and pairs of spaces compact. The closure of a set \(A \) in a space \(X \) is denoted by \(A. \)

By \(\text{Top}_B \) we mean the category of maps to a space \(B \) [1]. The morphisms of this category are called \(B \)-maps or fiber maps. Though the objects of the category \(\text{Top}_B \) are the maps \(p_X: \)
X + B, we shall use the notations (px, X) ∈ Ob TopB or X ∈ Ob TopB, meaning in the latter case
that a map px: X → B is fixed on a space X.

Let S ⊂ Top be some class of spaces. S∞ denotes the full subcategory of the category
TopB consisting of the maps f: E → B, where E ∈ S; S∞ denotes the class of spaces representa-
able in the form of direct limits of countable monotone sequences of spaces belong to class S.

Let H be a class consisting of compacts and admitting these conditions: If A, B ∈ H,
and C is a closed subset of the compactum A, then A × B ∈ H, C ∈ H, A/C ∈ H. A
pointed space (K, *) will be called universal for class H, if K ∈ AR (H), and for any compac-
tum A ∈ H, its point a ∈ A, and some n ∈ N there exists an embedding i: (A, a) → (K^n, *).

Consider the space K^n = lim_{→} [K^n, i_n], where the embeddings i_n: K^n → K^{n+1}, n ≥ 1,
are defined by the formula i_n(x_1, ..., x_n) = (x_1, ..., x_n, 0), (x_1, ..., x_n) ∈ K^n. It is easily seen
that the space K^n is the absolute extensor for class H.

If for class H we take the classes of finite-dimensional compacts, metric compacts,
compacts of weight ω < ω and for a universal object, the pointed compacts (I, 0), (Q, 0),
(I^ω, 0), then we have, respectively, the spaces R^∞, Q^∞, (I^ω)^∞.

As with the spaces R^∞ and Q^∞, one can consider general K^∞-manifolds and fibrations of
K^∞-manifolds. The assertions proved in this paper are fiberwise generalizations of well-
known theorems for the K^∞- and Q^∞-manifolds [2, 3].

In what follows, we shall consider class H and a universal object (K, *) fixed; (locally)
soft maps for class H will be called (locally) soft, if this does not cause misunderstand-
ings.

Definition 1. Let p: E → B be a map and let C ⊂ E be a compactum. An embedding h:
C × K ⊂ E is called a K-envelope of the compactum C if h|C × K = id × K, poh = p ◦ pr_C,
where i: C → C × K (i(c) = (c, *)) is an embedding and pr_C: C × K → C is the natural projection.

In an analogous way a K'∞-envelope of a compactum C ⊂ E is defined. Obviously, if each
compactum in a space E has a K-envelope, then it also has a K'∞-envelope for any n ≥ 1.

The following is a characterization theorem for trivial fibrations with the fiber K∞.

THEOREM 1. Let spaces E and B belong to class H∞, and let p: E → B be a map. The fol-
lowing conditions are equivalent: B × K∞ → B;

1) the map p is B-homomorphic to the trivial fibration
2) p is a soft map for class H, and every compact in the space E has a K-envelope;
3) the map p possesses the property F U (∪ H): for a pair X ⊃ Y, X, Y ∈ Ob H, each B-
embedding f: Y ⊂ E is extendable to a B-embedding f: X → E.

Proof. We shall prove the validity of the implications (1) → (2) → (3) → (1).

(1) ⇒ (2). Since the space K∞ belongs to class AE(H), the trivial fibration p_B: B × K∞ → B is H-
soft. Let C ⊂ B × K∞ be a compactum. There exists n ∈ N such that C ⊂ B_n × K^n, where
B × K^n = lim_{→} B_n × K is a representation of the space B × K∞ in the form of the direct limit of
a monotone sequence of compacts of class H∞. Then h = id × C × id × K: C × K → B_n × K^n × C ⊂ B_n+1 × K^n+1
⊂ B × K∞ is a K-envelope of the compactum C.

(2) ⇒ (3). Let X ⊃ Y, (p_X, X), (p_Y, Y) ∈ H∞ B and f: Y ⊂ E be a B-embedding. Since the
map p is H-soft, there exists a B-map F: X → E extending the embedding f. Let π: X/Y be a quotient map and let i: (X/Y, π(Y)) ⊂ (K^n, *) be an embedding, for some n ∈ N. Let h:
F(X) × K^n ⊂ E be a K^n-envelope of the compact F(X) ⊂ E. Then f = h(F × (i ◦ π)): X ⊂ E is the
required B-embedding extending the embedding f.

(3) ⇒ (1). It follows from what has been proved above that the trivial fibration p_B:
B × K∞ → B possesses property FU(H). Let B × K^n = lim_{→} Y_i, E = lim_{→} X_i be representations of the
spaces B × K∞ and E in the form of the direct limits of monotone sequences of compacts of
class H∞.