The paper considers functions defined by R-transducers on the set of binary representations of real numbers, in particular addition and multiplication operations, and examines the properties of the arithmetic of these R-numbers.

Addition and multiplication are the simplest and most basic operations on real numbers. One of the formalizations of real numbers in classical analysis is by binary representation, which in the modern context corresponds to machine representation of numbers in computers. This formalization leads to a definition of R-number [1] as an arbitrary element of the set $D = ((0) \cup I \{0, 1\}^\infty \cup ((0) \cup I \{0, 1\}^\infty \cup \{0\} \cup 1 \{0, 1\}^\infty$, where the symbols \vee and \wedge are the "binary" point and "minus one". To each R-number x obviously corresponds a real number \hat{x} [1]. In the class of functions $f: D \rightarrow D$ we distinguish the subclass of R-functions (defined by R-transducers), the class of C-computable functions, and the class of finite R-functions [1].

The last two classes are the real functions defined by Turing machines and by finite R-transducers. Real functions are defined in [2] by finite Mealy automata and generalized sequential machines. Each continuous real function g is representable as an R-function f so that $g = f$ [1]. This applies, in particular, to addition and multiplication functions of real numbers. In this paper, we provide rigorous definitions of R-functions of addition and multiplication, examine the resulting R-arithmetic, and compare the laws of R-arithmetic with the laws of machine arithmetic [3].

The addition R-function may be defined by a finite R-transducer. However, no finite R-transducer exists defining the multiplication function. Some R-functions are not defined by finite R-transducers because finite R-functions take rational values at rational points (Lemma 3). All R-functions are Riemann integrable, but there exist R-functions φ and h such that the function $f(x) = \varphi(h(x))$ is no longer Riemann integrable. Moreover, continuous real functions defined by finite R-transducers are described by special recursive systems of equations. Computable functions of a natural argument are known to be definable by recursive systems of Herbrand-Gödel equations. The Herbrand-Gödel approach is extended in this paper so that computable real functions are defined by special recursive systems of equations. In conclusion we show that continuous operators in a Hilbert space correspond to certain manipulation techniques of infinite arrays associated with R-transducers, while continuous real functions are also representable by infinite labeled trees.

We list the definitions of [1] that are used in this paper. Here $N = \{0, 1, \ldots\}$, $N^+ = N \{0\}$, $\Sigma_0 = \{0, 1, 2, 1, 2, \ldots\}$, $\Delta_0 = \Sigma_\delta(\vee), V^\ast$ is the set of all finite products of elements of the word set V, and $\varepsilon \in V^\ast$, where ε is the empty word, $V^\ast = V^\ast \{\varepsilon\}$, V^∞ is the set of all infinite products of words from V. Instead of $(a)^\ast$, $(a)^\infty$ we write a^\ast, $a^\infty (a = 0, 1, 1)$. Let $0' = 0V^\infty, 1' = 0V^\infty$. A word of length i in a one-letter alphabet $\{a\}$ is denoted by a^i. Let $F_0 = D \cap \Sigma_0^*0^\infty, K_0 = D \cap \Sigma_0^*(1, 1)^\infty, G_0 = D \setminus (F_0 \cup K_0), \text{Dom}(f)$ is the domain of definition of the function f. For $x \in D$, let $\|x\| = \hat{x}$ be the real number corresponding to the R-number x and f_A the partial R-function defined by the R-transducer A [1].

We define two addition R-functions g_1^0, g_1 and multiplication R-function g_2:

- $g_1^0(x, y) = \hat{x} + \hat{y}, g_1^0(x, y) \in G_0 \cup K_0 \cup \{0\}$;
- $g_2(x, y) = \hat{x} \hat{y}, g_2(x, y) \in F_0$, if $(x, y) \subset F_0$ or $\hat{x} \hat{y} = 0$; otherwise $g_2(x, y) \in D \setminus F_0$;
- $g_3(x, y) = \hat{x} + \hat{y}$, where $g_3(x, y) \in F_0$ if $\hat{x} + \hat{y} = 0$ or $\exists \alpha \in \{1, 1\}, i \in N^* (x, y) \subset \alpha \sum_{i=0}^{\infty} \vee (x, y) \subset 0V^0 \alpha \sum_{i=0}^{\infty} (x, y) \subset F_0$.

The pair of R-functions g_1^0 and g_2 should have the usual properties of addition and multiplication (commutativity, associativity, distributivity of g_2 by g_1^0). From the computational viewpoint, it is more natural to consider the R-function g_1 (and not g_1^0), because it is defined by an R-transducer representing the addition algorithm that constructs the result $g_1(x, y)$ from the high-order to the low-order bits and allows correction (when the current bit overflows).
LEMMA 1. The operation g_1 satisfies the commutativity property but does not satisfy the properties of associativity and distributivity of g_2 by g_1.

Proof. The identity $g_1(x, y) = g_1(y, x)$ is obvious. It remains to note the following counterexamples: $g_1(g_1(x, y), z) \neq g_1(x, g_1(y, z))$, $g_2(g_2(x, y), z) \neq g_2(x, g_2(y, z))$ for $x = y = 0 \forall 0^\infty, z = 0 \forall 1^\infty, v = 100\forall 0^\infty$.

A similar situation arises in machine arithmetic [3, pp. 53-54], which contains the law of commutativity but does not contain the associative and distributive laws.

The R-function g_1^0 is the real addition function with value set $G_0 \cup K_0 \cup \{0\}$. In general, any real function \tilde{f} represented by the R-function \tilde{f} may be represented by the R-function g with value set $G_0 \cup K_0 \cup \{0\}$. This follows from the next lemma.

LEMMA 2. For any R-transducer A there exists an R-transducer B such that $\text{Dom}(f_A) = \text{Dom}(f_B)$ and $\| f_A(x) \| = \| f_B(x) \|, f_B(x) \in G_0 \cup K_0 \cup \{0\}$ for any $x \in \text{Dom}(f_A)$.

The proof is by constructing an R-transducer B that "computes the output value with a deficiency".

Each R-transducer $A = (K, H, q_0)$ processes superwords in the alphabet Σ_0 into words or superwords in the same alphabet [1]. Without extending the functional capabilities, we convert the R-transducer commands into macros by writing them as productions of the form $\alpha \rightarrow \beta$, where $\alpha, \beta \in \Sigma_0$. This production implies that the transducer A in state q reads α from the input, delivers β to the output, and goes to state p. Such a generalized R-transducer will be called an OR-transducer. It has a finite or countable set of productions H. It is required that none of the words in the set $(\{u \mid \exists v(u \rightarrow v) \in H\}$ is a left subword of another word. Otherwise $A = (K, H, q_0)$ is a non-deterministic OR-transducer. Like the R-transducer [1], the OR-transducer A defines a partial R-function $f_A: D \rightarrow D$. If $\text{Dom}(f_A) = D$, then f_A is an R-function.

The function $f: D \rightarrow D$ is called metareal if $f(x) = f_1(f_2(...(f_n(x))...) for some $n \in \mathbb{N}^+$ and R-functions f_i, $1 \leq i \leq n$. Let φ and φ_2 be R-functions such that $\varphi(u \forall v) = u \forall 0^\infty, \| f_2(x) \| = 3 \forall x \in D, u \forall v \in D$. Then $f(x) = \varphi(f_2(x))$ is not an R-function. Below we use the function φ and show that metareal functions in general are not Riemann-integrable, whereas R-functions are Riemann-integrable.

THEOREM 1. There exists a metareal function $f(x) = \varphi(h(x))$ such that the real function \tilde{f} is not Riemann-integrable on $[0, 1]$.

Proof. Define the R-function h so that for any $v \in \{0, 1\}^\infty$ the value $h(v) = f_A(v)$, where f_A is the R-transducer defined by the OR-transducer A with the macro productions:

\[
\begin{align*}
q_00 & \rightarrow 0 \forall q_0,
q_000 & \rightarrow 12g,
q_001 & \rightarrow 1g,
q_0010 & \rightarrow 112g,
q_0011 & \rightarrow 1112g,
q_0abcd & \rightarrow 1111q_0(abcd \in \{0, 1\}^0 \setminus \{00\}),
q_0a & \rightarrow \varphi(q_0000 \rightarrow 1112g),
q_0a & \rightarrow \varphi_2(q_0abcd \in \{0, 1\}^{2k} \setminus \{0^{2k}\}),
q_0a & \rightarrow \varphi_3(q_0abcd \in \{0, 1\}^{2k+1} \setminus \{0^{2k+1}\}),
q_0a & \rightarrow \varphi(q_0abcd \in \{0, 1\}^{2k+2} \setminus \{0^{2k+2}\}).
\end{align*}
\]

Let $f(x) = \varphi(h(x)), x \in D$. The total sum of lengths of the intervals on which $f(x) = 1$ for $0 < x < 1$ is $1/4 + 3/4(1/2^2 + ((4^2 - 1)/4^2) - (1/4^2 + ((4^3 - 1)/4^3)(1/4^2 + ... < 1/4 + 1/4^2 + 1/4^3 + 1/4^4 ... = 1/3$. Hence it follows that the partitioning of the interval $[0, 1]$ into 2^n equal segments $I_1, I_2^* ... I_{2^n}^*$ with $r = 2 + 4 + ... + 2k$ for any arbitrarily large $k \in \mathbb{N}$ contains t distinct segments on which $f(x)$ takes the values 0 and 1 simultaneously, so that $t \cdot 1/2^n > 2/3$. Thus, the difference between the upper and lower Darboux sums for the function f on $[0, 1]$ is always less than $2/3$. Q.E.D.

THEOREM 2. There exists a finite R-function ψ such that ψ is a continuous nowhere differentiable function.

Proof. The sought finite R-function ψ is the periodic function $f = \psi_1, f(x) = \lim(f_1(x))$ on $[0, 1]$, and f_1 is a polygonal line with nodes from the set M_1 with $M_1 = \{(0, 1), (1/4, 1/2), (1/2, 0), (3/4, 1/2), (1, 0)\}$. Now, $M_i \subseteq M_{i+1}$ and if (z_j, z_k) is a segment of the polyline f_1 that contains no points from M_i other than $z_j = (x_j, y_j), j = 1, 2$, then M_{i+1} contains the points $z_j = ((x_1 + x_2)/2, y_2), z_k = ((x_1 + x_2)/4, y_4)$ and the midpoints of the segments $[z_1, z_2], [z_3, z_2], [z_4, z_2]$. The nature of the bends in the polyline immediately implies nondifferentiability at all points. It is easy to see that the function ψ is defined on the set $0\forall(0, 1)^\infty$ by the following three-state OR-transducer:

\[
\begin{align*}
q_00 & \rightarrow 0 \forall q_0,
q_000 & \rightarrow 0q_1,
q_001 & \rightarrow 1q_1,
q_010 & \rightarrow 1q_2,
q_011 & \rightarrow 0q_2,
q_000 & \rightarrow 0q_1,
q_001 & \rightarrow 1q_1,
q_010 & \rightarrow 0q_2,
q_011 & \rightarrow 1q_2,
q_000 & \rightarrow 1q_2,
q_001 & \rightarrow 0q_2,
q_010 & \rightarrow 0q_2,
q_011 & \rightarrow 0q_2,
\end{align*}
\]

The case $|\alpha| \leq 1$ corresponds to an R-transducer command [1].