AN ALGORITHM FOR THE ESTIMATION OF A FOURIER TRANSFORM

Z. T. Volkova and S. I. Sirvidas

UDC 681.3.06:51

The great labor-consuming character of the calculation of the estimates of a Fourier transform in relation to time as well as the memory of digital computers hampers the use of the Fourier transform in the investigations realizable on a digital computer. For the calculation of the estimates of a Fourier transform on a digital computer by the direct method we need at least $4N^2$ operations of multiplication where N determines the size of the discrete time sequence.

An algorithm economical in relation to the time of calculation of the estimates of a Fourier transform was first given in 1965 by Cooley and Tukey [1] and was called the method of quick Fourier transform in the literature. The quick Fourier transform is a highly effective procedure for the calculation of a discrete Fourier transform. The algorithm allows us to calculate iteratively the estimates of a Fourier transform in n steps ($N = 2^n$), which shortens the amount of calculations by $2N/\log_2 N$ times.

The realization of the algorithm of Cooley and Tukey on a universal digital computer is made difficult because of the necessity to introduce special commands of the type "inversion of code" or a standard program realizing the so-called "dual inversion" [2].

In the present article we have posed the problem of developing a rational algorithm which allows us to obtain the estimates of a Fourier transform on a universal digital computer which is effective in relation to the amount of calculation and memory, and which does not require the use of special commands.

Principle of Construction of the Algorithm

If a set of N complex numbers representing the values of the function X at the moments of time $t = 0$, Δt, $2\Delta t$, \ldots, $(N-1)\Delta t$ (X_0, X_1, X_2, \ldots, X_r, \ldots, X_{N-1}), is given, then the estimates for its Fourier transform are given by the formula

$$S_u = \sum_{r=0}^{N-1} X_r e^{i2\pi ur/N}, \quad u = 0, 1, 2, \ldots, N - 1,$$

(1)

where

$$q = \exp\left(-i\frac{2\pi u}{N}\right).$$

(2)

For $N = 2^n$ we can calculate S_u in n steps by using the following recurrence relation [1]:

$$X_r^{(i)} = X_r^{(i-1)} + q^{r/2} X_{r-2^{i-1}}^{(i-1)} e^{-2\pi i u/2^i},$$

$$r = 2^{i-1} 2^{i-1} + 1, \ldots, 2^{i-1} - 1,$$

$$X_0^{(i)} = X_0, \quad \alpha = 0, 1, \ldots, N - 1,$$

(3)

where \(\mu_r^{(l)} = \frac{N}{2^l} \cdot S_u = \sum_{(a)} \mu_r \), \(u = 0, 1, \ldots, N-1 \), and \(\delta (u) \) is the inversion of the dual expression of the number \(u \) \([1]\). We shall call the set of numbers \(\{X_r^{(l)}\} \) the \(l \)th intermediate array. The set of the numbers of the array which are formed by (3) from the numbers of the \((l-1)\)th array with the same \(X_r^{(l)} \) will be called a subarray of it. The number \(\beta \) of the subarrays of the \(l \)th array is given by \(\beta = 2^l \), \(l = 0, 1, \ldots, n \). Thus, the number of subarrays in the \(l \)th array is twice as much as that in the \((l-1)\)th array. The size of a subarray is determined by the number \(\alpha \): \[
\alpha = \frac{N}{2^l}, \quad \alpha = N, \frac{N}{2}, \ldots, 1.
\]

The exponents of the numbers of the subarrays \((k_l = 1 - \beta / 2)\) in the first half of the \(l \)th array coincide with the exponents of the numbers of the \((l-1)\)th array. The exponents of all the numbers of the subsequent subarrays \((k_A = \beta / 2 + 1 - \beta)\) of the \(l \)th array are formed from the sum of the exponents of the first half of the \(l \)th array and the term determined by the size of the array and the number of the formed array: \[
\mu_{s(l)} = \mu_s + \frac{N}{2^l},
\]
or \[
\mu_B = \mu_B + \alpha. \quad (4)
\]

For \(l = 0, \beta = 1 \), we have \(\mu_1 = 0 \); for \(l = 1, \beta = 2 \), we have \(\mu_2 = 1 \); for \(l = 2, \beta = 4 \), we have \(\mu_{k1} = \mu_0 = 0 \); for \(l = 3, \beta = 8 \), we have \(\mu_{k2} = \mu_1 + 0 + \frac{N}{2} \); for \(l = 4, \beta = 16 \), we have \(\mu_{k3} = \mu_2 + 0 + \frac{N}{2} + \frac{N}{4} \), and so on.