COMMUTATIVE CLOSURE OF CONTEXT-FREE LANGUAGES*

L. P. Lisovik

UDC 62-5:681.3:007

Let L be a language in an alphabet Σ, where $\Sigma = \{a_1, \ldots, a_n\}$. By $\pi(L)$ we denote the commutative closure of language L, being the set of all words obtained by all possible permutations of letters in the words of language L.

In the present paper we have indicated a necessary and sufficient condition for language $\pi(L)$ to be contextless for any contextless (or, what is the same, context-free) language L closed relative to the iteration operation. The condition mentioned is algorithmically verifiable. A short account of the results of the present paper appeared in [2]. The generalized solution of one special problem posed in [1] (p. 238), given in [3], is obtained as a corollary.

1. Definitions

The iteration operation ($*$) associates with each language L the language L^* made up from all possible products of words of language L. Here $e \in L^*$, where e is the empty word. For any word w we assume that $w^* = \{e, w, w^2, \ldots \}$.

$$\Sigma = \{a_1, \ldots, a_n\}, \quad N = \{0, 1, \ldots\}, \quad N^+ = N \setminus \{0\}.$$

For each ordered collection of words $w = (w_1, \ldots, w_n)$ we assume that f_w is a mapping of set N^n into the set $\bigcup_n w_n^*$ such that if $c = (c_1, \ldots, c_n) \in N^n$, then $f_w(c) = w_1^{c_1} \cdot \cdots \cdot w_n^{c_n}$.

We assume that $f_0 = f_w$, where $w = (a_1, \ldots, a_n)$; $0 \in N^k$ is the null vector.

For a system $P = \{p_1, \ldots, p_m\} \subseteq N^k$ and a vector $c \in N^k$ we assume that $L(c, P) = \{x \mid x = c + \sum_{i=1}^m k_ip_i, k_i \in N\}$. Set $L(c, P)$ is called a linear set with preperiod c and system P of periods.

The finite union of linear sets is called a semilinear set.

*The general concepts used in the article are defined in accord with [1].

LITERATURE CITED

For finite sets C, $P \subseteq \mathbb{N}^k$ we assume that $L(C; P) = \{x \mid x = y + z, y \in C, z \in L(\theta, P)\}$.

A vector $p \in \mathbb{N}^k$ is said to be stratified if it has no more than two nonzero coordinates.

A system of vectors $Q \subseteq \mathbb{N}^k$ is said to be stratified if each vector $q \in Q$ is stratified and no vectors $q = (q_1, \ldots, q_k) \in Q$, $p = (p_1, \ldots, p_k) \in Q$ and numbers $1 \leq f < s < r < t \leq k$ exist such that $q_f > 0$, $q_r > 0$, $p_s > 0$, $p_t > 0$.

We assume that system $P \subseteq \mathbb{N}^k$ is stratifiable with coefficient $l \in \mathbb{N}^+$ if for each $w \in L(\theta, P)$ there exists a stratified subsystem Q of system P such that $lw \in L(\theta, Q)$.

A vector $p \in \mathbb{N}^k$ is said to be stratified if it has no more than two nonzero coordinates.

A system of vectors $Q \subseteq \mathbb{N}^k$ is said to be stratified if each vector $q \in Q$ is stratified and no vectors $q = (q_1, \ldots, q_k) \in Q$, $p = (p_1, \ldots, p_k) \in Q$ and numbers $1 \leq f < s < r < t \leq k$ exist such that $q_f > 0$, $q_r > 0$, $p_s > 0$, $p_t > 0$.

We assume that system $P \subseteq \mathbb{N}^k$ is stratifiable with coefficient $l \in \mathbb{N}^+$ if for each $w \in L(\theta, P)$ there exists a stratified subsystem Q of system P such that $lw \in L(\theta, Q)$.

A finite sequence of positive integers $\tau = \alpha_1, \ldots, \alpha_k$, where $1 \leq \alpha_1 \leq n$, $1 \leq i \leq k$, is called a sequence.

For any $P \subseteq \mathbb{N}^n$ and sequence $\tau = \alpha_1, \ldots, \alpha_k$, by P_τ we denote the set of all vectors $q = (q_1, \ldots, q_k)$ for which a vector $p = (p_1, \ldots, p_n) \in P$ exists such that q and p have an equal number of nonzero coordinates and the following conditions are fulfilled: if $q_i > 0$, then $q_i = p_{\alpha_i}$; if $q_i > 0$ and $q_j > 0$, then $\min(\alpha_i, \alpha_j)$.

We assume that φ is a mapping of set Σ^* into set \mathbb{N}^n such that for any word $w \in \Sigma^*$ we have $\varphi(w) = (k_1, \ldots, k_n)$, where $k_i = |w|_i$.

2. Necessary and Sufficient Condition for a Language to be Contextless

THEOREM 1. Let $P \subseteq \mathbb{N}^n$ be a finite system of stratified vectors and let $L = f_0(L(\theta, P))$. Then the set $\pi(L)$ is a contextless language if and only if system P_τ is stratifiable for any sequence $\tau = \alpha_1, \alpha_2, \alpha_3, \alpha_4$.

Proof. Necessity. A set $C \subseteq \mathbb{N}^n$ exists such that $f_w(L(C; P_\tau)) = \pi(L)$ is a contextless language if and only if system P_τ is stratifiable for any sequence $\tau = \alpha_1, \alpha_2, \alpha_3, \alpha_4$.

Sufficiency. Let $P = \{p_1, \ldots, p_m\}$ and $p_i = (p_{i1}, \ldots, p_{in})$, $1 \leq i \leq m$. Let $d_j = \max\{p_{ij}, 1 \leq i \leq m\}$ and $d = \max\{d_j, 1 \leq j \leq n\}$.

We take a number $l_0 \in \mathbb{N}$ such that each system P_τ in the condition of the theorem is stratifiable with coefficient l_0.

Let us consider an automaton with a stack memory $M = (K, \Sigma, \Gamma, \delta, Z_0, q_0, q^*)$, where:

- $K \subseteq \mathbb{N}^n$ is the state set, $K = \{(a_1, \ldots, a_n) \mid 0 \leq a_i \leq d_i, 1 \leq i \leq n\}$;
- $\Sigma = \{a_1, \ldots, a_n\}$ is the set of input symbols;
- $\Gamma = \Sigma \cup \{Z_0\}$ is the set of symbols of the stack memory;
- δ is the mapping of set $K \times (\Sigma \cup \{\varepsilon\}) \times \Delta$ into the set of all finite subsets of set $K \times \Gamma^*$, where $\Delta = \{w \mid w \in \Gamma^*, |w|_i \leq nm^3l_0(d + 1)^{t_i} \}$ (defined below);
- $Z_0 \in \Gamma$ is a marker in the stack memory;
- $q_0 \in K$ is the initial state, $q_0 = (0, \ldots, 0)$;
- $q^* = q_0$ is the final state.

The mapping δ is defined by the following schemes of transition rules of types A, B, and C:

- **A:** $(g, \gamma) \in \delta((q, a_i, \gamma), q = (a_1, \ldots, a_n), a_i < d_i, 1 \leq i \leq n)$, and $g = q + \varphi(a_i)$;
 $(q, \gamma) \in \delta((q, a_i, \gamma), q = (a_1, \ldots, a_n), a_i = d_i, 1 \leq i \leq n)$, and $\gamma_i = \gamma \cdot a_i$.

Transitions of type A signify the entry of letters into the finite or stack memory.

- **B:** $(g, \gamma) \in \delta((q, a_i, \gamma), g = q - p_i$ for some $i \in 1, m$.

Transitions of type B signify the release of the finite memory with respect to some period $p_i \in P$.

- **C:** $(g, \gamma) \in \delta((q, \varepsilon, \gamma), q = (a_1, \ldots, a_n), a_i < d_i, 1 \leq i \leq n)$, $\gamma = Z_0 \cdot \varphi(a_i)$, and $\gamma_i = Z_0 \cdot \varphi(a_i)$.

Transitions of type C signify the rewriting of letters from the upper block of the stack memory of length $nm^3l_0(d + 1)^{t_i}$ into the finite memory of the automaton.