
SOLVABLE GROUPS OF FINITE NON-ABELIAN RANK

O. Yu. Dashkova

The concept of the non-Abelian rank of a group is introduced. Solvable groups of finite non-Abelian rank are studied and it is proved that their (special) rank is finite.

1. **Definition.** Suppose G is a group and \mathcal{F} a system of finitely generated subgroups. By the \mathcal{F}-rank of G we mean the smallest number r such that each subgroup in the system \mathcal{F} can be generated by at most r elements. If there is no such number r, we say that the \mathcal{F}-rank of G is infinite.

Note that if \mathcal{F} consists of all finitely generated subgroups of the group, then the concept of \mathcal{F}-rank agrees with that of the special rank introduced by Mal'tsev [1] and is usually called the rank of the group. On the other hand, finiteness of the general rank of a group [1] is equivalent to finiteness of the \mathcal{F}-rank for some local system of finitely generated subgroups of the group.

In the present paper, as in [2], we study groups of finite \mathcal{F}-rank, where \mathcal{F} is the system of all non-Abelian, finitely generated subgroups. In this case, for brevity, the \mathcal{F}-rank of a group G will be called the non-Abelian rank of G and will be denoted by $\overline{r}(G)$.

As usual, $r(G)$ will be used to denote the special rank of G.

It was shown in [2] that finiteness of the non-Abelian rank $\overline{r}(G)$ implies finiteness of the rank $r(G)$, if G is a periodic, locally solvable group or a locally nilpotent, torsion-free group. Our main result is the following:

THEOREM. A solvable group of finite non-Abelian rank has finite rank.

This result was announced earlier in [3].

2. The proof of the theorem will be preceded by several auxiliary results.

LEMMA 1. If K is a non-Abelian normal subgroup of a group G having finite non-Abelian rank, then $r(G/K) \leq \overline{r}(G)$.

Proof. Suppose H/K is any finitely generated subgroup of G/K. We represent H as a product $H = SK$, where S is some non-Abelian, finitely generated subgroup. It follows from

the definition of the non-Abelian rank of G that the subgroup S can be generated by at most $t(G)$ elements. Therefore, in view of the relation $H = SK$, the factor group H/K can also be generated by at most $t(G)$ elements. This proves the desired relation $r(G/K) \leq t(G)$.

COROLLARY. If a group G is the product $G = ZK$ of a central subgroup Z and a non-Abelian subgroup K, then $r(Z) \leq r(Z \cap K) + t(G)$. If $Z \cap K = 1$, then $r(Z) \leq t(G)$.

Proof. Since $G/K = Z/Z \cap K$, it follows that $r(Z) \leq r(Z \cap K) + r(G/K)$. Therefore the desired inequality is a consequence of the relation $r(G/K) \leq t(G)$ proved in Lemma 1.

LEMMA 2. If G is a non-Abelian finite or solvable group, then $r(Z(G)) \leq 3 + t(G)$.

Proof. Consider first the case of a finite group G. Choose in G a minimal non-Abelian subgroup F (a Miller-Moreno subgroup). It follows from a description of the structure of finite minimal non-Abelian groups [4, pp. 285, 309] that the rank of the center of F is at most 3. Applying the corollary of Lemma 1 to the subgroup $Z(G)F$, we obtain $r(Z(G)) \leq r(Z(G) \cap F) + t(G) \leq 3 + t(G)$.

Now suppose the group G is solvable and assume that $r(Z(G)) > 3 + t(G)$. Choose in the center $Z(G)$ of G a finitely generated subgroup Z such that

$$r(Z) > 3 + t(G),$$

and choose in G a finitely generated, met-Abelian subgroup H. The product $H_1 = ZH$ is a finitely generated, met-Abelian subgroup. Suppose p is a prime such that

$$r(Z) = r(Z/Z^p).$$

We use the result on the residual finiteness of finitely generated, met-Abelian groups, which follows from theorems of Hall [5]. In accordance with this result, the subgroup H_1 contains a normal subgroup M of finite index such that the factor group H_1/M is non-Abelian and the group H_1/ZP contains a normal subgroup N/ZP of finite index such that $Z \cap N = ZP$. The factor group $H_1/M \cap N$ is finite and non-Abelian and its center contains the subgroup $Z(M \cap N)/M \cap N$ which is isomorphic, in view of the relation $Z \cap N = ZP$, to the factor $Z/ZP \cap N$. It then follows from the fact on finite groups proved above that the rank of $Z/ZP \cap N$ is at most $3 + t(G)$, hence $r(Z/ZP) \leq 3 + t(G)$. In view of (2), this contradicts assumption (1) on the rank of Z. The lemma is proved.

LEMMA 3. The wreath product W of a group of prime order p and an infinite cyclic group has infinite non-Abelian rank.

Proof. Suppose A is the base of the wreath product W, $W = A \langle g \rangle$, $\langle g \rangle$ is an infinite cyclic group and $V = A \langle g^n \rangle$ is a subgroup of W where n is any natural number. The subgroup A is a direct product $A = A_1 \times \cdots \times A_n$ of g^n-admissible subgroups A_i, $i = 1, \ldots, n$, such that the product $A_i \langle g^n \rangle$ is isomorphic to W. Put $B_i = [A_i, g^n, g^n], B_i = [A_i, g^n], 2 \leq i \leq n$. The factor group $V = V/B_1 \times B_2 \times \cdots \times B_n$ has the decomposition $V = A \langle g^n \rangle/\langle A_i \langle g^n \rangle \rangle \times A_2 \times \cdots \times A_n$, where $A_i \langle g^n \rangle$ is a non-Abelian group, $[A_i] = p, 2 \leq i \leq n$. Applying the assertion of Lemma 1 to the group V and its subgroup $A_i \langle g^n \rangle$, we obtain $r(V/A_i \langle g^n \rangle) = r(A_2 \times \cdots \times A_n) \leq r(V) \leq r(W)$. Consequently, $n - 1 \leq r(W)$ and, therefore, since n is arbitrary, the non-Abelian rank $r(W)$ is infinite.

COROLLARY. Suppose a group G is a product $G = A \langle g \rangle$, where A is a periodic Abelian normal subgroup. If the non-Abelian rank of G is finite, then A is a union of finite normal subgroups of G.

Proof. It suffices to consider the case where A is a p-group, p a prime, and g is an element of infinite order. We will show that any element $a \in A$ is contained in a finite normal subgroup of G. Suppose p^n is the order of a and $A^k = \langle (a^p)^k \rangle$ is the normal closure of a^k, $k = 0, 1, \ldots, n$ in G.

Consider the series of subgroups

$$A_0 > A_1 > \cdots > A_n = 1$$

and put $G = A_0$. The subgroup $A_k = A_k/A_{k+1}$ of G is a factor of the series (3) and is generated by the elements