A THEOREM ON CONTINGENTS OF HYPERSPACES IN EUCLIDEAN SPACE

D. D. Ilmuradov

An attempt is made to carry out a deeper study of the contingent characterization of arbitrary sets in euclidean space \mathbb{R}^{m+1}.

Let E be an arbitrary set in euclidean $(m + 1)$-space \mathbb{R}^{m+1}. A ray ℓ beginning at a point $A(x) \in E \subset \mathbb{R}^{m+1}$, where $x = (x_1, x_2, ..., x_{m+1})$ (where A is a nonisolated point of E) is called an intermediate half-tangent of E at A if there exists a sequence of points $\{A_n\} \subset E$, converging to A, such that the sequence of rays $\{AA_n\}$ converges to ℓ.

The set of all intermediate half-tangents of E at A is called the contingent of E at A, denoted by $\text{cont}_{E}A$ [1].

Let $A \in E$ be a limit point of E. Take the unit sphere $S^m(A)$ at that point. The intersection of $\text{cont}_{E}A$ with the unit sphere $S^m(A)$ is known as the spherical contingent, denoted by

$$\text{cont}_{E}^S A = \text{cont}_{E}A \cap S^m(A).$$

Let $V_\varepsilon\cdot(A)$ be the ε-neighborhood of A, where $\varepsilon > 0$. Project all the points of $E \cap V_\varepsilon\cdot(A)\{A\}$ by rays beginning at A onto $S^m(A)$. Denote the resulting set by $M_\varepsilon(A)$.

It can be proved that the intersection of the closures of $M_\varepsilon(A)$ for all values of $\varepsilon > 0$ is the spherical contingent:

$$\text{cont}_{E}^S A = \text{cont}_{E}A \cap S^m(A) = \bigcap_{\varepsilon \to 0} M_\varepsilon(A).$$

The question of the contingent structure of an arbitrary set in \mathbb{R}^{m+1} in the measure sense was solved in [1].

As to the contingent characterization of sets of second category, there is no definitive solution to the problem even for the graph of a continuous function $u = f(x)$, where $x = (x_1, x_2, ..., x_m)$, though some results are nevertheless available [2]. It has been proved that for any locally compact set $E \subset \mathbb{R}^{m+1}$ the contingent $\text{cont}_{E}^S A$ at points of a subset of second category is a centrally symmetric closed set of rays. This paper is devoted to further refinement of the contingent characterization for an arbitrary set, in the case of the graph Γ of a continuous function $u = f(x)$, where $x = (x_1, x_2, ..., x_m)$ in some domain $D \subset \mathbb{R}^m$. Given the graph Γ of a single-valued function $u = f(x)$, we now define the cylindrical con-
tingent of the set at an arbitrary point \(A_0 \in \Gamma \). Let \(S^{m-1}(x_0) \) be the boundary of the unit ball \(V_m(x_0) \subset \mathbb{R}^m \), \(x_0 = \text{pr}_E \in D \); we will denote points on \(S^{m-1}(x_0) \) by \(\phi \), sometimes calling them directions at \(x_0 \). Compactify the cylinder \(C^m(A_0) = S^{m-1}(x_0) \times \mathbb{R}^1(u) \) with generators \(\mathbb{R}^1(u) \) parallel to the axis \(Ou \), by adding to each generator \(\mathbb{R}^1(u) \) two points at infinity, \(\pm \infty \); denote the compactified cylinder thus obtained by \(\hat{C}^m(A_0) = S^{m-1}(x_0) \times \hat{\mathbb{R}}^1(u) \). A point \(\tilde{A}_0 = (\phi_0, u) \) of \(C^m(A_0) \) will belong to the cylindrical contingent of \(\Gamma \) if there is a sequence of points \(A_k \in \Gamma \) such that:

1) the sequence of rays \(\tilde{A}_0A_k \) converges to some ray \(\tilde{\ell} \in \mathbb{R}^{m+1} \) such that a) \(\tilde{\ell} \) is not parallel to \(Ou \); then the intersection \(\tilde{\ell} \cap C^m \) over the ray \(\Phi_0 \) is denoted by \(u \); b) if \(\tilde{\ell} \) is parallel to \(Ou \), then \(u \) are the ideal points \(\pm \infty \) of \(C^m \) on the ray \(\Phi_0 \).

2) the ray \(\Phi = \Phi_0 \) is a half-tangent for the sequence of points \(\text{pr}_{V_m}A_k \).

The set of all such points is known as the cylindrical contingent of the graph \(\Gamma \) at \(A_0 \), denoted by \(\text{cont}^g_{C^m} \).

It should be noted that the cylindrical contingent is defined only for a single-valued function \(f \).

Consider an arbitrary point \(A_0(x_0, u_0), x_0 \in D \), of the graph \(\Gamma \) of a continuous function \(f \). Denote the points of this graph over a deleted \(\delta_q \)-neighborhood \(U_q(x_0) \setminus \{x_0\} \subset D \) by \(\Gamma_q \); clearly, \(\Gamma_q \) is connected. Denote the projection of \(\Gamma_q \) from \(A_0 \) onto \(C^m(A_0) \) by \(M_q \); \(M_q \) is also connected, and moreover \(M_q \supset M_{q+1} \). It is easy to see that

\[
\text{cont}^g_{C^m} A_0 = \bigcap_q M_q .
\]

Hence it follows that \(\text{cont}^g_{C^m} A_0 \subset C^m \) is a continuum. We will prove that the intersection of this continuum with an arbitrary generator \(\Phi = \Phi_0 \) is also connected. Indeed, take a ray \(\tilde{\ell} \subset D \) beginning at a point \(x_0 \in D \) which intersects the sphere \(S^{m-1}(x_0) \) at a point \(\Phi_0 \) and consider the conical neighborhood \(\Omega_q \subset D \) of the ray, defined as the set of all rays that form an angle less than \(\delta_q \) with \(\tilde{\ell} \); we will again assume that \(\delta_q \downarrow 0 \). Denote the points of the graph \(\Gamma \setminus \{A_0\} \) over \(\Omega_q \) that belong to the \(1/q \)-neighborhood of \(A_0 \) by \(\Gamma_q(\Phi_0) \). Obviously, \(\Gamma_q(\Phi_0) \) is connected. Denote the projection of \(\Gamma_q(\Phi_0) \) from \(A_0 \) onto \(C^m \) by \(M_q(\Phi_0) \); \(M_q(\Phi_0) \) is also connected, and moreover \(M_q(\Phi_0) \supset M_{q+1}(\Phi_0) \). It is easy to show that the intersection of \(\text{cont}^g_{C^m} A_0 \) with a generator \((\Phi_0, \mathbb{R}^1) \) of \(C^m \) is \(\bigcap_q M_q(\Phi_0) \). It follows that this intersection is connected.

Let us call a number \(a \) (possibly \(a = \frac{\partial f}{\partial \Phi} \)) a derivate of a function \(f \) in the direction \(\Phi \) if there is a sequence of points \(B_k(x_k) \in D \), \(k = 1, 2, \ldots \), that converges to \(B_0 \) in such a way that the sequence of directions of the vectors \(\overrightarrow{B_0B_k} \) converges in direction to \(\Phi \), and moreover

\[
(f(B_k) - f(B_0)) \big/ |B_0B_k| \to a.
\]

We will consider the cylinder \(C^m(A_0) \) relative to a cartesian coordinate system \(\{X, U\} \) translated parallel to itself to the point \(A_0 \) of the graph \(\Gamma \) of \(f \): \(X = x - x_0 \), \(U = u - u_0 \). Then it will not be hard to show that if \(a \) is a derivate of \(f \) in the direction \(\Phi \), then the point with coordinates \((\Phi, a) \) belongs to \(\text{cont}^g_{C^m} A_0 \), and conversely: every point of the contingent is a derivate of \(f \) in a suitable direction.

Definition. A continuum \(K \) on the cylinder \(C^m \) (and on \(S^m \) if \(K \) does not contain the points at infinity \(\pm \infty \)) is said to be regular if every generator of the cylinder (semi-meridian of the sphere) intersects it in a connected set.

If \(K \subset C^m \) is a regular continuum, there arise two naturally defined functions \(P(\Phi) \) and \(Q(\Phi) \) on \(S^{m-1} \): we let \((\Phi, P(\Phi)) \) and \((\Phi, Q(\Phi)) \) be the points of \(K \) which are, respectively, the lowest and uppermost points of \(K \) on the generator \(\Phi = \text{const} \) of \(C^m \). It is easy to see that \(P(\Phi) \) and \(Q(\Phi) \) are connected functions of \(\Phi \) on \(S^{m-1} \), and are constant on each connected component of \(S^{m-1} \) which contains \(K \).