COROLLARY. Let, in the notation of Theorem 1, \(f: C \rightarrow W \setminus D \) be a holomorphic mapping of lower order \(\lambda \leq 2 \) and \(D = \sum_{j=1}^{q} D_j \). Then \(f \) is equal to a constant if \(q > 4n \).

Remark. Let \(L \rightarrow W \) be a line bundle. The notation \(D_j \in \|L\| \) means that \(D_j \subseteq |\otimes^n L| \) for some natural number \(n \). One can prove that the Corollary to Theorem 1 remains true if the condition \(D_j \in \|L\| \) is replaced by the condition \(D_j \in \|L\| \).

2. Combining this with a theorem of Green [3], we get the following result.

THEOREM 2. Let \(W \) be a compact complex manifold \(\text{dim}_C W = n \), \(L \rightarrow W \) be a positive line bundle, \(D_j \in \|L\| \) be smooth divisors, and \(D = \sum_{j=1}^{q} D_j \) be a divisor with normal intersection. Then \(W \setminus D \) is a hyperbolic manifold if \(q > 4n \).

In particular, one has

THEOREM 3. Let \(\{V_j\}_{j=1}^{q} \) be a collection of smooth hypersurfaces of certain degrees in projective space \(\mathbb{P}_n(C) \), whose union has normal intersection. Then for \(q > 4n \), \(\mathbb{P}_n(C) \setminus \sum_{j=1}^{q} V_j \) is a hyperbolic manifold.

In conclusion, the author sincerely thanks B. Ya. Levin for a discussion at the municipal seminar on the theory of functions.

LITERATURE CITED

BANACH SPACES, CONCAVE FUNCTIONS, AND INTERPOLATION OF LINEAR OPERATORS

E. I. Berezhnoi

This paper is devoted to a study of interpolation spaces constructed from a pair of Banach spaces \((A_0, A_1) \) and a concave, positively homogeneous function \(\varphi: \mathbb{R}_+^2 \rightarrow \mathbb{R}_+^1 \) of the first degree. This construction occurred for the first time implicitly in the work of Gagliardo [1] and was described explicitly by Gustavsson and Peetre [2] in a paper devoted to the proof of the fact that the space \(\varphi(L_{\varphi_0}, L_{\varphi_1}) \) (the notation is to be understood in the sense of the theory of ideal spaces [3]) is an interpolation space, where \(L_{\varphi_0} \) and \(L_{\varphi_1} \) are Orlicz spaces and \(\varphi \) satisfies a certain additional condition.

1. Let \(U \) be the set of all nonzero, nonnegative concave functions \(\varphi: \mathbb{R}_+^1 \rightarrow \mathbb{R}_+^1 \). We denote the set of all nonzero nonnegative functions \(\varphi: \mathbb{R}_+^1 \rightarrow \mathbb{R}_+^1 \) such that each \(\varphi \) is concave, continuous in the totality of its variables, and positively homogeneous of the first degree by \(W \). It is easy to see that if \(\varphi \in W \), then \(\varphi_0(x) = \varphi(1, x) \) and \(\varphi_1(x) = \varphi(x, 1) \) are elements of \(U \), and, conversely, if \(\varphi \in U \), then \(\varphi_0(x, y) = x\varphi(y/x) \) and \(\varphi_1(x, y) = y\varphi(x/y) \) are elements of \(W \).

For \(\varphi \in U \) we define \(\hat{\varphi} \) by

\[
\hat{\varphi}(y) = \inf_{x \in \mathbb{R}_+^1} \frac{1 + \varphi(x)}{\varphi(x)}.
\]

(1)

The equality (1) defines an involution on U (this involution is closely related to the analogous involution of Lozanovskii [3]). The corresponding involution on W is defined by

\[\phi(x, y) = \inf_{(x_0, x_1) \in \mathbb{R}^2} p(x, y, x_0, x_1). \]

Let \((A_0, A_1)\) be an interpolation pair [7], and suppose that \(\varphi \in W\). Following [2], we denote by \(\varphi^G(A_0, A_1)\) the set of all elements \(a \in A_0 + A_1\) for each of which there exists a sequence \(u = \{ u_i \} (i \in \mathbb{Z})\) of elements of \(A_0 \cap A_1\) such that \(a = \sum u_i\) (convergence in \(A_0 + A_1\)) and such that for any finite set \(F \subseteq \mathbb{Z}\) and any real sequence \(\xi = \{ \xi_i \} (i \in \mathbb{Z})\) with \(| \xi_i \| < 1\) we have that

\[\left\| \sum_{i \in F} \xi_i u_i \right\|_{A_0} \leq c, \quad \left\| \sum_{i \in F} \xi_i u_i q_i (2^i) \right\|_{A_0} \leq c \]

(c does not depend on \(\xi\)). This space becomes a Banach space if we introduce the norm \(\| a \| = \inf c\). We note that \(A_0 \cap A_1\) is not, in general, dense in the space \(\varphi^G(A_0, A_1)\).

The space \(\varphi^G(A_0, A_1)\) is an interpolation space, and

\[\| T \| \varphi^G(A_0, A_1) - \varphi^G(B_0, B_1) \| \leq \max \{ K_0, K_1 \}, \quad \max \{ K_0, K_1 \} = \| T \| A_1 \rightarrow B_1 \| . \]

In addition, we have the bound

\[\| T \| \varphi^G (A_0, A_1) - \varphi^G (B_0, B_1) \| \leq cK_0M_0 (K_1K_0^{-1}). \]

where \(M_0\) denotes the dilatation function (see [8]) of \(\varphi_0(x)\).

Let \(X_0\) and \(X_1\) be Banach ideal spaces (see [9]), and suppose that \(\varphi \in W\). We will denote the construction of Lozanovskii [3] by \(\varphi(X_0, X_1)\). We denote the spaces of sequences \(x = \{ x_i \} (i \in \mathbb{Z})\) with norms \(x \| = \sum | x_i |\) and \(\| x \|_\infty = \sup_i | x_i |\) by \(l_1(\omega)\) and \(l_\infty(\omega)\), respectively.

Lemma 1. Let \(A_j = l_\infty (\omega_j) (j = 0, 1) \). Then the space \(\varphi^G (A_0, A_1) \) is isomorphic to the space \(\varphi (l_\infty (\omega_0), l_\infty (\omega_1)) \).

Lemma 2. Let \(A_j = l_1 (\omega_j) (j = 0, 1) \). Then the space \(\varphi^G (A_0, A_1) \) is isomorphic to the space \(\varphi (l_1 (\omega_0), l_1 (\omega_1)) \).

We can deduce the following theorem from Lemmas 1 and 2.

Theorem 1. Suppose that \(A_0 \cap A_1\) is dense in \(A_0, A_1\), and \(\varphi^G(A_0, A_1)\). Then the space \(\varphi^G(A_0, A_1)\) can be imbedded continuously in the space \(\varphi^G(A_0, A_1)^*\).

Suppose that \(\varphi, \varphi_0, \varphi_1 = W\) and that the numerical equality

\[\varphi (x_0, x_1) = \varphi (\varphi_0 (x_0, x_1), \varphi_1 (x_0, x_1)) \]

is satisfied.

Theorem 2. The space \(\varphi^G (A_0, A_1)\) can be imbedded continuously in \(\varphi^G (\varphi_0^G (A_0, A_1), \varphi_1^G (A_0, A_1))\).

Theorem 3. Suppose that \(\varphi^G (A_0, A_1)^*\) reestablishes a norm in \(\varphi^G (A_0, A_1)\) and that \(A_0 \cap A_1\) is dense in \(A_0, A_1\). Then \(\varphi^G (\varphi_0^G (A_0, A_1), \varphi_1^G (A_0, A_1))\) can be imbedded continuously in \(\varphi^G (A_0, A_1)\).

Theorems 2 and 3 play the role of a reiteration theorem for the function \(\varphi^G\).

We note the connection of the spaces \(\varphi^G(A_0, A_1)\) with the spaces constructed in the best-known interpolation constructions.

The space \(\varphi^G (A_0, A_1)\) can be imbedded continuously in \((A_0, A_1)_{K, Y_0}\), where \(Y_0 = l_\infty (l_{\varphi_0} (\omega_0))\), and it contains \((A_0, A_1)_{K, Y_1}\), where \(Y_1 = l_1 (l_{\varphi_1} (\omega_0))\) (for definitions of these spaces, see [12]). If \(\varphi (x_0, x_1) = x_0^\theta x_1^{1-\theta} (0 < \theta < 1)\), then we have the continuous imbedding

\[\varphi^G (A_0, A_1) \subset (A_0, A_1)_\theta, \]

where \([A_0, A_1]_\theta\) denotes the space obtained by Calderon's second method [7]. It is very interesting to clarify when the imbedding in (2) can be replaced by equality.