FAMILIES OF RECURSIVE PREDICATES
OF MEASURE ZERO

R. I. Freidzon

Our aim is to render precise the meaning of statements of the type, "Almost all recursive predicates have (do not have) a given property," and to describe a method (Theorem 2) whereby the truth of such statements can be relatively easily verified. We give an example of the use of this method to characterize a number of properties of recursive predicates formulated in terms of constraints on the complexity of their regular approximations (see [1]).

1. Let us fix the Gödel numbering discussed in [2] for partial recursive functions (PRF's). We denote the function numbered i by i. We denote by I the set of natural numbers i for which i is a general recursive function (GRF) assuming one of the two values 0, 1. We denote by $[i]$, where $i \in I$, a word of the form $i(0) i(1) ... i(n-1)$.

Let x be a binary cortege (word in the alphabet {0, 1}); we denote by $l(x)$ the length of the cortege x, and by $<x>$ a natural number such that for any natural n the following condition holds: If $n < l(x)$, then $i(x) \in I$ coincides with the n-th letter to the left in the cortege x, otherwise $i(x) = 0$.

We call the set of natural numbers i such that $i \in I$ and $[i]$ a word of the form $i(0) i(1) ... i(n-1)$, the Baire x ball and denote it by $B[x]$; we define the radius $\rho(x)$ of the ball $B[x]$ as the number $2^{-l(x)}$. We call a binary cortege x a code of the Baire ball B if $B = B[x]$.

Let M be a set of natural numbers, $M \subset I$. By analogy with [3], we introduce the following definitions. An algorithm Δ that converts natural numbers into codes of Baire balls (binary cortegees) is called a covering of the set M if for any natural number n in M it is possible to construct a natural number m such that $m \in B[\Delta(n)]$.

We call a covering Δ regular if the sequence of numbers

$$\sum_{m \in M} \rho(\Delta(m))$$

converges constructively. We call a covering Δ ε-bounded (where ε is a positive rational number) if

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.
We say that a set M has measure zero in G if for any positive rational number ε a regular ε-bounded covering of M is realizable.

The foregoing definition of a set of measure zero is a natural one, being analogous to the definition of the set of constructive real numbers of measure zero (investigated in [3]). In a number of situations, however, the proof of statements of the type, "The set M has measure zero in G," which relies directly on this definition, is extremely cumbersome in its development. It proves possible to simplify such proofs by an equivalent characterization of the concept of a set of measure zero without the use of the covering concept.

We say that a covering A of a set M is translation-invariant if for any natural number n, the algorithm $A^{(n)}$ defined by the condition

$$\forall i \left(A^{(n)}(i) = A(n+i) \right)$$

is also a covering of the set M.

Lemma 1. Let M be a set of natural numbers, $M \subset G$. For M to have measure zero in G it is necessary and sufficient that a regular translation-invariant covering of M be realizable.

Proof. Necessity. Let M have measure zero in G. We introduce the notation $\mathcal{E}_\kappa \equiv 2^{-\kappa}$, denote by Λ_κ a regular \mathcal{E}_κ-bounded covering of M, and by Λ the algorithm defined by the condition

$$\forall n \left(\Lambda(n) = \Lambda_{\mathcal{E}_n}(\nu(n)) \right),$$

in which $\ell(n)$, $\tau(n)$ are the left and right members, respectively, of a pair of natural numbers with quantifier number n (see [4], p. 63). The regularity of the covering Λ follows from the constructive convergence of a sequence of the form

$$\sum_{\mathcal{E}_n} \rho(A_\kappa(i)) \quad (\kappa=0,1,...)$$

and the constructive convergence of the sequence

$$\sum_{\mathcal{E}_n} 2^{-i}.$$

Moreover,

$$\forall m \in M \forall \kappa \exists n_{>\kappa}(m \in D(n)).$$

Therefore, for any κ the algorithm $A^{(\kappa)}$ is a covering of M.

Sufficiency is obvious.

Let \mathcal{F} be a recursive set of binary cortege; we introduce the notation