\[|\varphi(t) - \exp(-t^2/2)| \leq \varepsilon^2 R^{2M} \]

for any values of \(t \) in the interval \([-\frac{AR}{2}, \frac{AR}{2}]\), and with

\[M = \left(\ln \frac{1}{\varepsilon} \right) \left(\ln \ln \frac{1}{\varepsilon} \right) \]

As we can see from the proof of the theorem, it is easy to find a lower bound for the function \(\varepsilon_0(A, \delta) \), and we shall not dwell on this. Let us also note that it would be more accurate to consider instead of \(M \), its integer part \([M]\), but this likewise has hardly any effect on the results.

Let us illustrate the above theorem by some examples.

1. Let \(R = \exp \left(\ln \frac{1}{\varepsilon} \right) \left(\ln \ln \frac{1}{\varepsilon} \right) \). Then \(R^{2M} < \varepsilon^{-\eta} \) for any small number \(\eta > 0 \) if \(\varepsilon > 0 \) is small. Hence \(|\varphi(t) - \exp(-t^2/2)| < \varepsilon^\delta \) for any \(t \in \left(-\frac{AR}{2}, \frac{AR}{2} \right) \), where \(\delta \) can be taken as desired in the interval \((0, 1)\) if \(\varepsilon > 0 \) is sufficiently small.

2. Let \(R = \left(\ln \frac{1}{\varepsilon} \right)^{1/2}, 0 < \gamma < \frac{1}{2} \). In this case \(R^{2M} = \varepsilon^{-2\gamma} \), and therefore \(|\varphi(t) - \exp(-t^2/2)| < \varepsilon^{\delta - 2\gamma} \) for any assigned \(\delta \in (0, 1) \) and any \(t \in \left(-\frac{AR}{2}, \frac{AR}{2} \right) \).

In conclusion, let us note that the subject under discussion is encountered in certain problems involving positive-definite functions, for example, in the statistics of stationary processes with an analytic correlation function.

LITERATURE CITED

RATE OF CONVERGENCE TO A STEADY STATE IN QUEUING SYSTEMS OF TYPE G\mid G\mid m\mid 0

L. Seidl

Estimates that are uniform according to the number of servers are obtained for the rate of convergence to a steady state in queuing systems of type G\mid G\mid m\mid 0.

1. **Statement of the Problem**

We shall consider queuing systems of type G\mid G\mid m\mid 0, i.e., systems consisting of \(m \) (\(1 \leq m \leq \infty \)) servers at which the calls arrive one by one and they are served by one of the free servers. If an incoming call does not find a free server, then it is not taken into consideration.

Suppose that the calls with numbers 0, 1, 2, ... arrive at the system at the instants \(t_0 = 0, t_1 = e_0, t_2 = e_0 + e_1, ... \), and that the service time of the \(n \)-th call is \(s_n \). We shall assume that \(P(e_j = 0) = P(s_j = 0) = 0 \) for any \(j \geq 0 \).

Let \(Y_j \) be the number of occupied servers at the instant of arrival of the call number \(j \) (\(j \geq 0 \)). For simplicity we shall assume that the call number \(j = 0 \) arrives at the system at the instant \(t_0 = 0 \) and that it finds the system empty, i.e., \(Y_0 = 0 \). The sequence of random variables (r.v.) \(X = (Y_0, Y_1, ...) \) is related to the defining sequence of the random vectors \(X = (X_0, X_1, ...) \), \(X_j = (e_j, s_j) \) as follows (see, for example, [1]).

Transcribed from Problemy Ustoichivosti Stokhasticheskikh Modelei — Trudy Seminara, pp. 94-107, 1980.
\[Y_n = \sum_{k=0}^{n-1} I(s_k > e_k + \ldots + e_{n-1}) \delta(Y_k); \quad n = 1, 2, \ldots, \]

where \(I \) is the indicator of an event and \(\delta(Y_k) = 1(Y_k < m) \). In the notation for the sequence \(Y_n \) and the function \(\delta(\cdot) \) we omitted the dependence on the number \(m \) of servers. In the cases in which it is necessary to indicate this relationship, we shall use the notation \(Y_n^m, \delta^m(\cdot) \).

By \(\mathcal{S} \) we shall denote the set of all sorts of defining sequences (specified on the same probability space) that can be continued to narrow-sense stationary and metrically transitive sequences \(\{X_n: -\infty < n < \infty\} \) (see [2]). The continued sequences will be denoted in the same way as the original sequences, i.e., by \(X \). The subset of the set \(\mathcal{S} \) in which all the sequences \(X = \{X_n\} \) are independent will be denoted by \(\mathcal{S}_I \).

Let \(X \in \mathcal{S}, E_0 < \infty \), and let us introduce the following notation [under these conditions we denote by \(Q_k(x) \) a proper random variable]:

\[Q_k(x) = \sum_{i=0}^{\infty} I(s_{k+i} > e_{k+i} + \ldots + e_{k+x}), \quad -\infty < k < \infty, \quad x > 0; \]

\[A_k^L = \{Q_k(0) < L, Q_k(e_{k+1}) < L-1, \ldots, Q_k(e_{k+1} + \ldots + e_{k+L-1}) = 0\}, \]

\[-\infty < k < \infty, \quad 1 \leq L \leq m. \]

We have the following assertion [1, Chap. 7, Theorem 1].

If \(X \in \mathcal{S}, P\left(\bigcup_{k=1}^{m} A_k^L \right) > 0 \), then for \(n \to \infty \) the distribution of the sequence of processes \(Y(n) = (Y_0+n, Y_1+n, \ldots) \) will converge to the distribution of a stationary process \(Y^* = (Y^*_0, Y^*_1, \ldots) \) such that \(P(Y^*_0 = m) < 1 \). Convergence is understood here in the following sense: There exist processes \(Z(n) = (Z^*_0, Z^*_1, \ldots) \) which are distributed in the same way as \(Y(n) \) and such that for \(n \to \infty \) we have

\[P\left(\bigcup_{k=1}^{\infty} \{Y^*_k \neq Z^*_k\} \right) \leq P(Y^*_0 \neq Z^*_0) \to 0. \]

This paper is devoted to a study of estimates (uniform with respect to a set \(\mathcal{S}_I \in \mathcal{S} \) and to the number \(m \) of servers) of the rate of convergence of the sequence \(Z_0^n \) (the distribution functions \(F_{Z_0^n} \)) to the final random variable \(Y^*_0 \) (the distribution function \(F_{Y_0^*} \)) in the metrics \(\tau_1 \) and \(\sigma \), \(\kappa_1 \) defined below.

A method of construction of such estimates has been proposed by Borovkov [3]; with the aid of this method it was possible to obtain specific estimates for systems of type GI\|GI\|m and GI\|GI\|m\|0 by Borovkov [1], Akhmarov [4], and the author [5]. Let us note also the papers of Zolotarev [6] and of Kalashnikov [7], in which similar estimates have been obtained by another method.

2. System of Notations and Assumptions

By \(\mathfrak{S} \) let us denote a space of one-dimensional real r.v. defined on a fundamental probability space. Let us define the metrics in the space \(\mathfrak{S} \) that will be used below. Let \(Z \) and \(Z' \) be random variables that take their values in \(\mathbb{R} \). Let

\[i(Z, Z') = EI(Z \neq Z'), \]

\[\tau_1(Z, Z') = E |Z - Z'|, \]

\[\sigma(Z, Z') = \sup \{ |P(Z \in A) - P(Z' \in A)| : A \in \mathfrak{S} \}, \]

where \(\mathfrak{S} \) is the system of all Borel sets in \(\mathbb{R} \);

\[\kappa_1(Z, Z') = \int |P(Z < x) - P(Z' < x)| \, dx. \]

Let us note [1U] that any two r.v. \(Z, Z' \in \mathfrak{S} \) always satisfy the inequalities \(i(Z, Z') \geq \sigma(Z, Z'), \tau_1(Z, Z') \geq \kappa_1(Z, Z') \), whereas in the case of integer \(Z \) and \(Z' \) they satisfy also the inequalities \(\tau_1(Z, Z') \geq i(Z, Z') \) and \(\kappa_1(Z, Z') \geq \sigma(Z, Z') \). Therefore it suffices to obtain estimates of the rate of convergence in the metrics \(i \) and \(\tau_1 \) only.

In the following we shall select the defining sequences from a set \(\mathcal{S}_I \in \mathcal{S} \), on which we shall impose a collection of conditions such as those that follow below.