STABILITY OF SOME CHARACTERIZATION PROPERTIES OF THE EXPONENTIAL DISTRIBUTION

A. Obretenov and S. Rachev

1. Introduction

The characterization properties of the exponential distribution have been studied in many papers. Some of these papers are dealing also with the stability (robustness) of these properties [1-9].

In this paper we shall consider the stability of characterizing the exponential distribution by the absence of an aftereffect in the mean (the "lack-memory" property). Thus, we obtain stability bounds that sharpen some of the results obtained in [1, 4]. We also analyze the stability in a class of distributions with a monotonic intensity.

2. Stability of Characterizing the Exponential Distribution by the Absence of Aftereffect in the Mean

Let X be a nonnegative random variable (r.v.) with a distribution function (d.f.)

$$F(x) = P(X < x)$$

and a reliability function (r.f.) $G(x) = 1 - F(x)$. Azlarov, Dzhamirzaev, and

Translated from Problemy Ustoichivosti Stokhasticheskikh Modelei -- Trudy Seminara, pp. 79-87, 1983.
Sultanova [1] have obtained the following characterization of the exponential distribution by the absence of an aftereffect in the mean of first and second order (the k-th-order case has been considered by Sakhobov and Geshev, see, for example, [8, Theorem 2.3.2]). If we have for a natural k the equation

$$E\{(X-x)^k/X \geq x\} = EX^k < \infty, \tag{1}$$

then X will have an exponential distribution.

For the case $k = 1, 2$, the stability of the result has been studied in [1] as follows.

If the condition

$$\sup_{x \geq 0} |E\{(X-x)^k/X \geq x\} - a| < \varepsilon, \ a > 0, \tag{2}$$

is satisfied, then we shall have ε-proximity between the distribution function F and the exponential distribution in a uniform metric.

It is easy to see that condition (2) is too restrictive, since it implies the existence of an exponential moment of the random variable X. Klebanov and Yanushkyavichene [4] have suggested the use of a condition weaker than (2), i.e., absence of a K-th-order aftereffect in the mean:

$$\sup_{x \geq 0} |E\{(X-x)^k/X \geq x\} - EX^k| \cdot P(X \geq x) \leq \varepsilon. \tag{3}$$

Similarly to condition (3), let us write for any numbers $k = 1, 2, \ldots$ and $\lambda > 0$ the formula

$$H_k(x; \lambda) = G(x)[E\{(X-x)^k/X \geq x\} - k!/\lambda^k], \ x \geq 0. \tag{4}$$

Then the functional

$$LM_{k, \lambda}(G) = \sup \{H_k(x; \lambda); x \geq 0\}$$

will specify the degree to which the distribution F has no aftereffect. Let us write

$$B(x; \lambda) = G(x) - \exp(-\lambda x), \ \lambda > 0, \ x \geq 0. \tag{5}$$

Then the functional

$$Exp_{\lambda}(G) = \sup \{B(x; \lambda); x \geq 0\}$$

will be a uniform measure of the proximity between the distribution F and an exponential distribution with a parameter λ.

Theorem 1. For any $\lambda > 0$ and a reliability function G, we have the inequality

$$Exp_{\lambda}(G) \leq 2LM_{k, \lambda}(G). \tag{6}$$

Proof. Let $LM_{k, \lambda}(G) \leq \varepsilon < \infty$. By virtue of definition (4) we have an equation

$$H_1(x; \lambda) = \int_{\lambda}^{\infty} G(u) \, du - \lambda^{-1} G(x). \tag{7}$$

From the inequality $H_1(x; \lambda) \leq \varepsilon$ it follows that the first moment $\mu_1 = EX$ is finite, and that

$$|\mu_1 - \lambda^{-1}| \leq \varepsilon.$$