We consider a system of ordinary differential equations containing slow (position) and fast angular variables of the form

$$\frac{dx}{dt} = \varepsilon \alpha(x, \varphi), \quad \frac{dq}{dt} = \omega(x),$$

where \(x \) and \(\varphi \) are \(n \)- and \(m \)-dimensional vectors, respectively, \(\varepsilon \) is a small positive parameter, and the real vector-functions \(\alpha(x, \varphi) \) and \(\omega(x) \) are defined in the region

$$G_{n+m} = \{ x \in D \subset R^n, \; \varphi \in R^m \}$$

and are \(2\pi \)-periodic with respect to \(\varphi \) there. Systems of this form have been treated by many authors [1-6]. In the present note we give a fundamental method for averaging with respect to fast variables, taking into account relations among frequencies [5], which allows long-periodic harmonics as well as the old terms to remain in the averaged equations.

Let the natural number \(N \) be given and consider the set \(Q \) consisting of \(m \)-dimensional integral vectors \(k \) for which \(|k| = \sum_{i=1}^{m} |k_i| \leq N \). Suppose that \(\bar{Q} \subset Q \). Then we associate with system (1) the system

$$\frac{dx}{dt} = \varepsilon \sum_{i \in \bar{Q}} a_k(\bar{x}) e^{i(k, \varphi)}, \quad \frac{dq}{dt} = \omega(\bar{x})$$

which we call its averaged system. We study the proximity of the slow solutions of (1) and (3) on the time interval \([0, \varepsilon^{-1}]\) under the conditions that \(x(0) = \bar{x}(0), \; \varphi(0) = \bar{\varphi}(0) \).

We assume that \(Q = \bigcup_{i=1}^{4} Q_i \), where

$$Q_1 = \{ k : |(k, \omega(x))| \leq a_1 |k|^{-l} \; \forall x \in D \},$$

$$Q_2 = \left\{ k : \left\| a_k(\bar{x}) \right\| dt \leq a_2 \varepsilon^{-l} \forall t \in [0, \varepsilon^{-1}], \; l_2 < 1 \right\},$$

$$Q_3 = \{ k : \frac{\delta(k, \omega)}{\| \partial(x, \omega) \|} \leq a_3 |k|^{-l} \forall x \in D \},$$

$$Q_4 = \{ k : \left| \frac{\delta(k, \omega)}{|k|^{-l}}, \; \delta(x, \varphi) \right| \geq a_4 \varepsilon^{l}, \; |(k, \omega(x))| \leq a_5 \varepsilon^{l}, \; \varphi \in R^m \}.$$
THEOREM. Suppose that system (1) is such that

1) the vector-functions $a(x, \varphi)$ and $\omega(x)$ satisfy the conditions

$$
\sum_{i=1}^{n} \sup_{x} |a_i(x)| \leq \sigma_0, \max_{\varphi_0, \varphi_1} \sup_{x} \left| \frac{\partial^{|\varphi_0|} a_0 (x, \varphi)}{\partial \varphi_1^{\varphi_1}} \right| \leq \sigma_0^2,
$$

where $i = 1, n, \rho = (\rho_1, \ldots, \rho_m)$, $s = (s_1, \ldots, s_n)$ are integer vectors with nonnegative components, and $a(i)$ is the i-th component of $a(x, \varphi)$;

2) for $N = E\{e^{-C_1}\}$, $Q = \bigcup_{i=1}^{4} Q_i$, where the Q_i are determined by conditions (4)-(7);

3) $Q_3 \subset \bigcup_{i} \bigcap_{j} Q_i$ and for each vector $k \in Q \cap Q_4$, a condition analogous to (7) is fulfilled, in which the function $\delta(x, \varphi)$ is replaced by

$$
\tilde{\delta}(x, \varphi) = \sum_{k \in Q} a_k(x) e^{i_{k}(\varphi, \varphi_i)} + \sum_{k \in Q} a_k(x) e^{i_{k}(\varphi, \varphi_i)}
$$

4) $l_1 < \frac{1}{2} \cdot l_t < \frac{1}{2}$, $l_t > m + \max(1 + 2l_1, 2 + l_1, l_3)$;

5) the solution $\tilde{x}(t)$ of the averaged system (3) is contained in the region D together with its μ-neighborhood.

Then there exists $\varepsilon_0 > 0$ such that for all $\varepsilon \leq \varepsilon_0$ and $t \in [0, \varepsilon^{-1}]$ we have that

$$
\| x(t) - \tilde{x}(t) \| \leq \sigma_{10} \exp \left\{ \frac{1}{2} t + \frac{1}{2} \right\},
$$

where σ_{10} is some constant.

Proof. We put $z(t) = x(t) - \tilde{x}(t)$ in (1); then

$$
\frac{dz}{dt} = \varepsilon \sum_{k \in Q} a_k(x) e^{i_{k}(\varphi, \varphi_i)} + \sum_{k \in Q} a_k(x) e^{i_{k}(\varphi, \varphi_i)} - \sum_{k \in Q} a_k(x) + \varepsilon \sum_{k \in Q} a_k(x) e^{i_{k}(\varphi, \varphi_i)},
$$

where $a_N = \sum_{k \in Q} a_k(x) e^{i_{k}(\varphi, \varphi_i)}$, $R_N = \sum_{k \in Q} a_k(x) e^{i_{k}(\varphi, \varphi_i)}$, $\frac{dz}{dt}$ is a certain average value of $\frac{a_N(x)}{dx}$ in G_{n+m}. Taking into account the facts that $k \in Q_3$ and

$$
\left| (k, \varphi) - (k, \varphi) \right| = \left| \int_{0}^{t} \left((k, \omega(x)) - (k, \omega(x)) \right) d\tau \right| \leq \sigma_0 e^{-k l t + \frac{1}{2} t},
$$

we get that

$$
\| z(t) \| \leq \varepsilon \sum_{k \in Q} \| a_k \| k l t + \frac{1}{2} t \| z(t) \| d\tau + \varepsilon \sum_{k \in Q} \| \frac{a_N}{dx} \| \| z(t) \| d\tau + \varepsilon \sum_{k \in Q} \| a_k \| e^{i_{k}(\varphi, \varphi_i)} d\tau + \varepsilon \sum_{k \in Q} \| a_k \| e^{i_{k}(\varphi, \varphi_i)} d\tau + \varepsilon \sum_{k \in Q} \| R_N d\tau \|
$$

It is well known [6] that if (8) is satisfied, then there exist constants σ_{11} and σ_{12} such that $\| R_N \| \leq \sigma_{11} N^{-l_t-m}$

$$
\sigma_{11} N^{-l_t-m} + \varepsilon \sup_{k \in Q} \| a_k \| \leq \sigma_{12} \text{ for } l_t > m + l_3.
$$

Since $|dz(t)| \leq \| z(t) \| d\tau$ for $t \in [0, \varepsilon^{-1}]$, it follows by the Gronwall-Bellman lemma that

$$
\| z(t) \| \leq \left[\sigma_{11} N^{-l_t-m} + \varepsilon \sup_{k \in Q, \omega^{-1}} \left(\left\| \int_{0}^{t} \sum_{k \in Q} a_k(x) e^{i_{k}(\varphi, \varphi_i)} d\tau \right\| + \left\| \int_{0}^{t} \sum_{k \in Q} a_k(x) e^{i_{k}(\varphi, \varphi_i)} d\tau \right\| \right) \right] \exp \left(\sigma_{12} + n \sum_{i=1}^{n} \sigma_{0}^{i} \right).
$$

(11)