FINITE IRREDUCIBLE GROUPS, GENERATED BY REFLECTIONS, ARE MONODROMY GROUPS OF SUITABLE SINGULARITIES

A. N. Varchenko and S. V. Chmutov

UDC 513.836+517.919

1. Introduction

1. Groups, Generated by Reflections, and Singularities. The theory of singularities of smooth functions is closely connected with the theory of finite groups, generated by reflections. This connection appears in the following three assertions.

(1) The variety of orbits of the complexification of the action of a finite reflection group is biholomorphically equivalent with the base of a miniversal deformation of the corresponding singularity. Under this isomorphism the variety of nonregular orbits is mapped onto the bifurcation diagram.

(2) A reflection group is isomorphic with the monodromy group of the corresponding singularity.

(3) The isomorphism cited in the first assertion is defined by the period map, i.e., by integration of a holomorphic form defined on the total space of the bundle of hypersurfaces of level zero over the complement of the bifurcation diagram, with respect to a basis in the homology space of the fibre which depends continuously on a point of the base of the bundle.

Finite irreducible groups generated by reflections are classified and exhausted by the following list: A_n, $B_n(=C_n)$, D_n, E_6, E_7, E_8, F_4, G_2, $I_2(p)$, H_3, H_4. The majority of them are groups of symmetries of regular polyhedra: A_n of a n-dimensional simplex, B_n of a n-dimensional cube, G_2 of a hexagon, $I_2(p)$, $p > 6$, $p = 5$ of a p-gon, H_3 of an icosahedron, F_4, H_4 of the corresponding four-dimensional polyhedra [1, 2].

The singularities corresponding to the indicated groups are denoted by the same letters and are found in [3, 4, 5, 6]. In [4, 7, 8, 9], (1)-(3) are proved for the singularities A_n, B_n, E_6, E_7, E_8 of functions of an odd number of variables. In [5], (1) and (2) are proved for singularities B_n, C_n, F_4 of functions of an odd number of variables on a manifold with boundary. In [6], (1) is proved for the singularities G_2, $I_2(p)$, H_3 of functions on a manifold with singular boundary. Recently, O. P. Shcherbak produced a singularity which he called H_4, and proved (1) for it.

In this paper (3) is proved for the singularities B_n, C_n, F_4 of functions of an odd number of variables; the singularities cited, corresponding to the groups G_2, $I_2(p)$, H_3, are different from those cited in [6], but are closely connected with them; for these singularities (1)-(3) are proved. Analogs of (2) and (3) are unknown for the group H_4.

2. Symmetric Singularities. In [5] the following interpretation of singularities of functions on a manifold with boundary was used. After passage to the two-sheeted covering, functions on a manifold with boundary become functions which are symmetric with respect to the action of the cyclic group Z_p, which changes the sign of one of the coordinates. In the present paper this analogy is extended. We consider singularities of functions, which are symmetric with respect to the cyclic group Z_p, and their symmetric miniversal deformations. In this situation Z_p acts on the homology of nonsingular level hypersurfaces of the functions. This action commutes with the natural action of the fundamental group of the complement of the bifurcation diagram on the parameter space of the deformation. Thus, the homology splits into the direct sum of subspaces, which are invariant both with respect to the action of the group Z_p, and with respect to the action of the fundamental group.

The groups G_2, $I_2(p)$, H_3 arise as images of the action of the fundamental group on a suitable invariant subspace in the homology of a suitable symmetric singularity. The period

map is constructed as follows. On all level hypersurfaces of functions there is singled out uniquely a holomorphic form of highest degree. There is singled out a basis which is covariant constant in the Gauss–Manin connection, of a suitable invariant subspace of the homology. The period map relates a point of the complement of the bifurcation diagram to the vector of integrals of the form over the homology classes of the basis, defined up to the action of the monodromy group. One proves that this map extends holomorphically to a map of the parameter space of the deformation into the space of orbits of the complexification of the action of the corresponding group, generated by reflections, and has the properties cited in (1).

In this paper the concept of an equivalent vanishing vector in the homology of non-singular level hypersurfaces of functions constituting a symmetric miniversal deformation is defined, generalizing the concept of a vanishing vector [10]. Equivariant vanishing vectors (with suitable degree of equivariance) for the singularities A_μ, D_μ, E_ν, E_ϕ, F_ϕ, G_ϕ form a system of roots of the synonomous types; those for the singularities B_μ, C_μ do the same but for types G_μ, B_μ respectively. The collection of equivariant vanishing vectors for singularities $I_2(\pi)$, H_3 have properties analogous to the properties of systems of roots. Cf. Sec. 2.7 for more details.

The symmetric singularities corresponding to the groups G_2, $I_2(\pi)$, H_3 arise in the following way from the singularities G_2, $I_2(\pi)$, H_3 cited in [6] of functions on a manifold with singular boundary. In each case the pair manifold-boundary is isomorphic with the pair consisting of the space of orbits and the space of nonregular orbits of the group of symmetries of a suitable regular polyhedron. After passage to a suitable covering, the functions on the manifold with boundary turn into our functions, which are symmetric with respect to the group of symmetries of the polyhedron, in particular, with respect to the cyclic group of rotations of it.

Cf. [11, 12] also on symmetric singularities.

The authors are grateful to O. V. Lyashko, in whose lectures we learned the construction of the passage from boundary singularities to symmetric ones and the formulation of the problem was posed. The authors are grateful to V. I. Arnol'd, E. B. Vinberg, O. P. Shcherbak for many helpful discussions.

2. Formulation of Results

1. Equivalent Monodromies, Vanishing Vectors, and Period Map. Let G be a finite group acting linearly on \mathbb{C}^n, $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be the germ of a holomorphic function at an isolated critical point, symmetric with respect to G. A deformation $F: (\mathbb{C}^n \times \mathbb{C}^l, 0 \times 0) \to (\mathbb{C}, 0)$ is said to be a G-deformation, if for any $\lambda \in \mathbb{C}^l$ the function $F(\cdot, \lambda)$ is G-invariant. A G-deformation of the germ f is said to be G-equivalent with a deformation induced from F (cf. [3, 13]) for more precision). A versal G-deformation with smallest number of parameters is called miniversal. As a miniversal G-deformation one can take $F(x, \lambda) = f(x) + \sum \lambda_j \varphi_j(x)$, where $\{\varphi_j\}$ generate a basis in $C[[x_1, \ldots, x_n]]/(\partial f/\partial x) G$, and by the index G we denote G-invariant series [13]. We always take $\varphi_1 \equiv 1$.

We choose a sufficiently small ball $B = \{x \in \mathbb{C}^n \mid ||x|| < \varepsilon\}$. Depending on ε we choose a sufficiently small ball $\Lambda = \{\lambda \in \mathbb{C}^l \mid ||\lambda|| < \delta\}$. We denote by V_{λ} the intersection of the zero level hypersurface of the function $F(\cdot, \lambda)$ with the ball B. By the bifurcation diagram of the deformation F is meant the subset $\Sigma \subseteq \Lambda$, consisting of those parameters λ, for which the hypersurface V_{λ} is singular. Over $\Lambda \setminus \Sigma$ the manifolds V_{λ} form a locally trivial bundle. With this bundle there are associated the cohomology bundle $H^{n-1} \to \Lambda \setminus \Sigma$ with fibre $H^{n-1}(V_{\lambda}, \mathbb{C})$ and the homology bundle $H_{n-1} \to \Lambda \setminus \Sigma$ with fibre $H_{n-1}(V_{\lambda}, \mathbb{C})$. The bundles H^{n-1} and H_{n-1} are provided with the Gauss–Manin connection.

On the fibres of these bundles the group G acts naturally. We consider the canonical decomposition (cf. [14]) of a representation of the group G on the space $H_{n-1}(V_{\lambda}, \mathbb{C})$: $H_{n-1}(V_{\lambda}, \mathbb{C}) = \bigoplus \mathbb{C} H_{\lambda}(\lambda)$ (i.e., if $H_{n-1}(V_{\lambda}, \mathbb{C}) = U_1 \oplus \ldots \oplus U_k$ is the decomposition into the direct sum