BIPOSITIVE PROJECTION OPERATORS IN A PARTIALLY ORDERED VECTOR SPACE

V. S. Ten

For brevity, the vector space E partially ordered with the aid of a linear semigroup K such that $K \cap (-K) = \{0\}$, $E = K - K$, will be called the space (E, K). By $P = P(E, K)$ we shall denote a class of linear homomorphisms $p: F \to E$ such that $p^2 = p; p: K \to K; p' = I - p: K \to K$. The elements of the class $P(E, K)$ will be called bipositive projection operators.

The study of the positive spectrum of a positive operator [1, 2] in the general case, when the operator is not indecomposable, can be greatly facilitated in a number of cases if the operator is preliminarily subjected to a quasitriangular decomposition with the aid of bipositive projection operators [3]. This circumstance was the main reason for defining the class P. In the sequel it was found that many properties of this class are not related to the topology of the space (E, K), since they are algebraic properties. Therefore we shall confine ourselves at first to the case that the space (E, K) is a simple vector space, and not a normed space. In this note we shall prove the first fundamental property of the class of bipositive projection operators (P being a Boolean algebra).

Remarks. 1. To avoid misunderstanding, we intentionally refrain from calling the space (E, K) a semi-ordered space, since this term is often used for vector configurations [4, 5].

2. In the class of all linear homomorphisms $\text{Hom}(E; E)$ it is possible to introduce a natural ordering as follows. Let $A, B \in \text{Hom}(E; E)$; we shall assume that $A \to B$ if and only if $A - B: K \to K$. Since $K \cap (-K) = \{0\}$, it follows that if $A \to B$, $A \to B$, then $A = B$.

Auxiliary Assertions. Let $(E; K)$ be a partially ordered space, and let $P = P(E, K)$ be bipositive projection operators.

1. Let $p \in P; x, y \in K$. Then:
 a) $x \geq px$;
 b) if $px \geq y$, then $py = y$.

2. Let $p, q \in P$. Then:
 a) if $pq = qp$, then $pq \in P$;
 b) the condition $q = pq$ is equivalent to the inequality $q \leq p$;
 c) if $p \geq q$, then $pq = qp$.

We shall prove only the Assertion 2c. Let $q \leq p$; it hence follows from Assertion 2b that $q = pq$. Next, let $s = qp$. We have $sq = (qp) q = q(pq) = q^2 = q$, hence $s - q = s - sq = sq'$. The operator s, being a product of two positive projection operators, is positive; therefore either $s - q = sq' \geq 0$, or $s \geq q$. Furthermore, $q = q(p + p') = qp + qp' = s + qp'$, hence $q \geq s \geq q$, and thus $s = q$.

THEOREM. The class of bipositive projection operators $P(E, K)$ acting in the space (E, K) is a Boolean algebra under a natural ordering. If $p, q, r \in P(E, K)$, then:

a) $p \wedge q = pq = qp \in P$ and $p \wedge p' = 0$;

b) $p \vee q = p + q - pq \in P$ and $p \vee p' = 1$;
c) \((p \lor q) \land r = (p \land r) \lor (q \land r)\).

Let us preliminarily introduce the following concept. Let \(E_0\) be a linear subspace of \(E\), \(K_0 = K \cap E_0\).

If:

a) \(E_0 = K_0 - K_0\);

b) for any vector \(u \in K_0\) we have the inclusion \(\{z \in K \mid z \leq u\} \subseteq K_0\);

c) \(x_0 \in E_0\) and there exists a sup\(x_0 \in E_0\), then sup\(x_0 \in E_0\), we shall call in this case the space \((E_0, K_0)\) a component of the space \((E, K)\) \([4, 5]\).

Now we shall formulate an assertion that is also of intrinsic interest.

LEMMA. Let \(p, q \in P(E, K)\). Then the space \((pqE, pqK)\) will be a component of the space \((E, K)\).

Here

\[pqE =qpE = \{x \in E \mid x = px = qx\}. \]

Proof of Theorem. Let \(r = pq\), \(s = qp\). Let us show that \(r = s\). According to the lemma we have \(rE = sE\). Hence if \(x \in E\), then \(rx \in sE\); according to (*) we hence obtain \(s(rx) = qp(rx) = q(rx) = rx\), i.e., \(sr = r\) and \(s - r = s - sr = s(I - r)\). But \(I - r = I - pq = I - p + p - pq = p' + pq' \geq 0\).

Thus \(s - r = s(I - r) = s(p' + pq') \geq 0\), or \(s \geq r\). By a similar reasoning we can prove on the basis of the condition \(sx \in rE\) that \(r \geq s\). Hence \(s = r\), and by virtue of Assertion 2a we have \(pq = qp \in P(E, K)\).

Let us show that \(p \land q = pq\). In fact, let \(m \in P\) and \(m \leq p, q\). Then \(m \leq q\) and \(pm \leq pq\). But since \(m \leq p\), it follows from Assertion 2b that \(m = pm \leq pq = qp = r\). On the other hand,

\[pr = p(pq) = p^2 q = pq = r, \quad qr = q(qp) = r. \]

It therefore follows from Assertion 2b that \(r \leq p, q\), and hence \(p \land q = pq\).

Let us show that \(t = p + q - pq = p \lor q\). We have

\[t = p + q - pq = p + pq' = q + p'q, \]

hence \(t \geq p, q\). Next,

\[t^2 = (p + p'q)(p + p'q) = p^2 + p'qp + pp'q + p'q'q = p + p'q = t. \]

Here we used the commutativity of bipositive projection operators and the fact that \(pp' = 0\). Since \(t^2 = I\), \(t = I - t\) = \(I - p - p'q - p' - p'q = p'q' \geq 0\), we have proved that \(t\) is a bipositive projection operator and \(t \geq p, q\).

Now let \(m \in P\) and \(m \geq p, q\); it then follows from Assertions 2b and 2c that \(pm = p\) and \(mq = q\). Thus \(mt = mp + mpq' = p + qp' = t\); hence \(t \leq m\), and \(t = p \lor q\). Assertion c is a direct consequence of Assertions a and b.

Thus we have completed the proof of the theorem.

Remark. Bipositive projection operators occur in the study of \(K_\sigma\)-spaces \([4, 5]\). Their algebraic properties, however, are left aside in this case, and all the propositions related to \(P\) are derived from the condition of \(\sigma\)-completeness of a linear configuration. In \(K\)-linear manifolds which are not \(K_\sigma\)-spaces one does not deal with bipositive projection operators. On the other hand, with the aid of Stone's theorem \([6]\) it is easy to construct for any preassigned Boolean algebra \(\Sigma\), a space \((E, K)\) that is not a \(K_\sigma\)-space and in which the class \(P(E, K)\) is isomorphic to \(\Sigma\).

LITERATURE CITED