ENDOMORPHICALLY CLOSED QUASIGROUPS

A. D. Bol'bot and Yu. N. Golubev UDC 512.4

We construct examples of an endomorphically closed loop and of an endomorphically closed TS-quasigroup that are not entropic.

A groupoid $G = \langle \sigma, \cdot \rangle$ is said to be a groupoid with additive endomorphisms, or an endomorphically closed groupoid if, for any endomorphisms α, β of G, the mapping

$$x (\alpha \cdot \beta) = x \alpha \cdot x \beta \quad (x \in G)$$

is also an endomorphism, and it is said to be entropic if the following identity holds on the groupoid:

$$xy \cdot zw = xz \cdot yw.$$

It is known that any entropic groupoid is endomorphically closed. By generalizing the concepts of endomorphic closure and of the entropic law to arbitrary algebras, Evans [1] has shown that a variety of algebras has the property of being endomorphically closed if and only if it is entropic. For individual algebras this is not true; Etherington [2] has constructed an endomorphically closed groupoid which is not entropic, V. P. Belkin [3] has constructed a semigroup with the same property. The present note is devoted to the construction of similar examples for loops and for TS-quasigroups.

By a quasigroup we mean an algebra of type $\langle 2, 2, 2 \rangle$ satisfying the well known identities $x = (xy)/y$, $x = y(x/y)$, $x = x/y$, $y = y(x/y)$. A quasigroup with an identity is called a loop.

We follow Evans [1] and say that a quasigroup is entropic if the following holds for any basic operations f_1, f_2 in K:

$$f_1(f_2(x, y), f_2(z, w)) = f_2(f_1(x, z), f_1(y, w));$$

we also say that a quasigroup is endomorphically closed if, for any endomorphism α, β of it and for any basic operation f, the mapping

$$x (f(\alpha, \beta)) = f(x \alpha, x \beta) \quad (x \in K)$$

is also an endomorphism.

Let K be an idempotent quasigroup. Following [4] and [5] we adjoin the element 1 (1 \in K) externally to the set K and define the binary operations 1 (1 $\not\in$ K) on $L = K \cup \{1\}$ in the following way:

1) $x \circ y = x \cdot y$, $x \mathbin{\#} y = x/y$, $x \mathbin{\backslash} y = x \backslash y$, if $x, y \in K$, $x \neq y$;
2) $1 \circ x = x = 1$ for all $x \in L$;
3) $x \circ 1 = 1$ for all $x \in K$.

It is easily verified that the algebra $\langle L, \circ, \mathbin{\#}, \mathbin{\backslash} \rangle$ is a loop; we shall denote this loop by L_K.

THEOREM. Let K be an idempotent quasigroup or finite or infinite order $n \geq 4$ with the property:

(i) any two distinct elements of K generate K.

TABLE 1

<table>
<thead>
<tr>
<th>1</th>
<th>a</th>
<th>t</th>
<th>a/t</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a/t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>a/t</td>
<td>1</td>
</tr>
<tr>
<td>a/t</td>
<td>a</td>
<td>t</td>
<td>a</td>
</tr>
</tbody>
</table>

Then for any endomorphism \(\varphi \) of the loop \(L_K \), other than the zero endomorphism \(\varepsilon : x \rightarrow 1 \), the bounded mapping \(\varphi = \varphi/K \) is an automorphism of \(K \).

Proof. In view of (i) \(L_K \) is generated by any elements \(a \) and \(b \) provided that \(a \neq b \), \(a \neq 1 \) and \(b \neq 1 \). If \(\varphi \) is an automorphism of \(L_K \) then the assertion is obvious. Let \(\varphi \) be a true endomorphism of \(L_K \), we shall show that then \(\varphi = \varepsilon \).

In fact, if there exist \(u \) and \(v \) such that \(u \neq v \) but that \(u \varphi = v \varphi \), then, by taking \(t = u \varphi v \), we obtain that \(t \neq 1 \) and that \(\varphi = 1 \). We take \(a \in L_K \) (\(a \) is different from \(t \) and \(1 \)) and form the products: \(e = (a \circ t) \circ a \) and \(d = (t \circ a) \circ a \). It is easy to check that \(e \varphi = d \varphi = 1 \) and that \(e \neq 1 \) and \(d \neq 1 \).

We are going to show that \(e = d = t \). If, for example, \(d \neq t \), then \(t \) and \(d \) would generate the loop \(L_K \). Since \(t \varphi = d \varphi = 1 \), then \(\varphi \) would be the zero endomorphism. Hence \(e = d = t \), whence we have that \(a \circ t = t \circ a \) and that \((a \circ t) \circ a = t \). Similarly \(a = (t \circ a) = t \). We shall next show that the elements \(z = (a \circ t) \circ t \) and \(w = t \circ (a \circ t) \) are equal to the element \(a \). In fact, if, for example, \(z \) were not equal to \(a \) then the elements \(r = z \circ a \) and \(s = z \circ (a \circ t) \) would be generators of \(L_K \), but \(r \varphi = 1 \) and \(s \varphi = 1 \).

Thus, we have proved that the elements \(1, a, t, a \circ t \) form a loop of order four (see Table 1). Because the order of the loop \(L_K \) is greater than or equal to five, and because \(L_K \) is generated by the elements \(a, t \) we have arrived at a contradiction.

Thus, the theorem is proved.

Table 2 defines a quasigroup \(T \); it is not difficult to verify that \(T \) satisfies the hypotheses of the theorem. Let us show that the identity is the only automorphism of \(T \).

The following relations hold between the elements \(a, b \in T \): \(a = b(\hat{a}b), b = (\hat{b}a) a, b = a(b(ab)) \). If we operate on these qualities with the automorphism \(\varphi \) we obtain the system of equations

\[
x = y (y x), \quad y = (y x) x, \quad y = (y (y x)),
\]

where \(x = a \varphi, y = b \varphi \). The solutions of the first and second equations of the system (1) are respectively

\[
\begin{align*}
x & = a \varphi, \quad x = a \varphi, \\
y & = b \varphi, \quad y = b \varphi,
\end{align*}
\]

Their only common solution, other than \(x = a, y = b \), is the solution \(x = e, y = c \); but this is not a solution of the third equation of the system (1):

\[
e \neq e, \quad e (c (ec)) = e (ca) = ef = d,
\]

hence \(\varphi \) is the identity automorphism.

We form the loop \(L_T \); according to our theorem it only has two endomorphisms: the identity \(\varepsilon : x \rightarrow x \) and the zero endomorphism \(\varepsilon : x \rightarrow 1 \). In view of the identity \(x \circ x = 1 \) in \(L_T \) we have

\[
\begin{align*}
o & = \varepsilon \circ \varepsilon = \varepsilon / \varepsilon = \varepsilon, \quad e = a = a \neq a = a \neq e = a = a \neq e = a, \\
e & = e \circ o = o \circ e = e / o = o \neq e = o \neq e = o \neq e = o = e = o = e.
\end{align*}
\]

Hence, the loop \(L_T \) is endomorphically closed; however, the entropic law is not fulfilled in \(L_T \) because it is noncommutative.

We next construct an example of an endomorphically closed TS-quasigroup that does not satisfy the entropic law.

Let us recall that by a **TS-quasigroup** we mean a groupoid satisfying the identities

\[
x \cdot xy = yx \cdot x = y.
\]

The binary operation, with respect to which the identities (2) hold, is called the **TS-operation**. A **TS-quasigroup** can also be defined as a quasigroup in which the three operations \(\cdot, /, \backslash \) coincide.