THE FINAL σ-ALGEBRA OF AN INHOMOGENEOUS
MARKOV CHAIN WITH A FINITE NUMBER OF STATES

D. V. Senchenko

UDC 519.2

It is proved that the final σ-algebra in the case of an inhomogeneous Markov chain with a finite number of states n is generated by a finite number ($\leq n$) of atoms. The atoms are characterized from the point of view of the behavior of trajectories of the chain. Sufficient conditions are given (in the case of a countable number of states) that there should exist an unique atom at infinity.

Introduction. We consider an inhomogeneous Markov chain $x(t)$, $t = 0, 1, 2, \ldots$, with a finite number n of states and transition functions $p_{ij}(s, t)$. Let $N_{t, \infty}$ be the minimal σ-algebra induced by the chain in time $[t, \infty)$, $N = \cap N_{t, \infty}$ the final σ-algebra, P_{ti} measures on $N_{t, \infty}$ induced by the chain (i.e., conditional distributions under the condition $x(t) = i$). The set $B \in N_{t, \infty}$ is said to be null if $P_{ti}(B) = 0$ for all t and i. The set $B \in N_{t, \infty}$ is said to be a nonnull (a.c.) atom if B is nonnull and does not split into the sum of two nonnull nonintersecting sets. We know (see, e.g., [1]), that for a homogeneous Markov chain with a finite number of states, a trajectory of the chain, from some moment of time onwards, lies in one of a finite number of closed subsets of the states of the chain (an atom). For an inhomogeneous chain $x(t)$ a similar fact is true if we consider the trajectory at some nonrandom subsequence of moments of time. It is shown in this paper that any nonnull N-measurable set coincides almost certainly with respect to any measure P_{ti}, with the combination of a finite number ($\leq n$) of a.c. atoms. We can divide the space of states into subsets E_j and find a sequence $\{t_k\}$, $t_k \to \infty$, such that each of the a.c. atoms coincides a.c. with one of the events:

$$\bigcup_{j} \bigcap_{k \geq t} x(t_k) \subseteq E_j.$$

We also give the sufficient conditions for "complete confusion at infinity," i.e., that the σ-algebra should consist of one a.c. atom. The sufficient conditions for "confusion" are given for the case of a countable number of states.

§ 1. THEOREM 1. The σ-algebra N contains not more than n pairwise nonintersecting nonnull sets.

Proof. Since the chain $x(t)$ is Markovian, for $A \in N$ we have

$$P_{ti}(A/N_{t, \infty}) = P_{ti}(A), \text{ a.c. } P_{ti},$$

(1)

where $N_{s,t}$ is the σ-algebra induced by the chain in time $[s, t]$. If we pass to the limit in (1) as $t \to \infty$, and use the convergence of the martingales [2] we obtain

$$\lim_{t \to \infty} P_{ti}(A) = P_{si}(A/N_{t, \infty}) = \chi(A), \text{ a.c. } P_{si},$$

(2)

where $\chi(A)$ is the characteristic function of the set A. If A is nonnull, it follows from (2) and the finiteness of the number of states of the chain that there is a state j and a subsequence $\{t_k\}$ of the sequence $\{t_i\}$, $t_i = 0, 1, 2, \ldots$, such that

$$\lim_{t_k \to \infty} P_{t_k}(A) = 1.$$
Consider a linear span over the set of vector functions of the form

\[P_t(A) = \{P_{t1}(A), P_{t2}(A), \ldots, P_{tn}(A)\}, \quad A \in N. \]

We can show that the pairwise nonintersecting sets \(A_1, A_2, \ldots, A_l \) correspond with linearly independent vector functions

\[P_i(A_1), P_i(A_2), \ldots, P_i(A_l). \]

It was shown above that there is a state \(j \) and a sequence \(\{t_k\} \) such that

\[\lim_{k \to \infty} P_{t_k,j}(A_1) = 1, \]

Since \(A_2, A_3, \ldots, A_l \) are nonintersecting with \(A_1 \),

\[\lim_{k \to \infty} P_{t_k,i}(A_2) = 0 \quad \text{for} \quad 2 \leq r \leq l. \]

Hence in the equality

\[c_1P_1(A_1) + c_2P_2(A_2) + \ldots + c_lP_l(A_l) = 0, \]

\(c_1 = 0 \) and we can similarly verify that \(c_2 = 0, \ldots, c_l = 0 \). To prove the theorem it remains to show that there are not more than \(n \) linearly independent vector functions. Suppose for fixed \(s \) the basis for a linear span of vectors of the form

\[P_s(A) = \{P_{s1}(A), P_{s2}(A), \ldots, P_{sn}(A)\}, \quad A \in N, \]

contains \(k(s) \) \((k(s) \leq n)\) vectors. From the Markovian property

\[P_{si}(A) = \sum_{j=1}^{n} p_{ij}(s, t) P_j(A) \quad (4) \]

it follows that \(k(s) \) does not decrease as \(s \to \infty \). Since \(k(s) \not\equiv n \), then, beginning with some \(s_0 \), \(k(s) \) remains constant, \(k(s) = k \) for \(s \geq s_0 \). If \(\{P_{s_0}(A_1), A = 1, 2, \ldots, k\} \) is a basis for the above vector space at time \(s_0 \), \(\{P_{t}(A_1), A = 1, 2, \ldots, k\} \) remains a basis for any \(t \geq s_0 \), by (4). If we use the Markovian property (4) again, we find that in the expansion

\[P_t(A) = c_1^tP_1(A_1) + c_2^tP_2(A_2) + \ldots + c_k^tP_k(A_k), \quad A \in N, \]

the constants \(c_1^t, c_2^t, \ldots, c_k^t \) can be assumed to be independent of \(t \). This shows that there are not more than \(k(k \leq n) \) linearly independent vector functions and the theorem is thus proved.

The assertion of Theorem 1 is similar to that of Lemma 2 [3], where an inhomogeneous Markov process, continuous to the right, with a finite number of states was discussed and the \(\sigma \)-algebra induced by the process to the left of the limit point of the discontinuities was studied.

It follows from Theorem 1 that there are a.c. atoms

\[A_1, A_2, \ldots, A_k \quad (k \leq n) \]

such that their union forms a space of elementary events and any \(N \)-measurable set is either null or differs by zero from the combination of a number of the atoms \(A_1, A_2, \ldots, A_k \). Since the number of states is finite, by (3), for each a.c. atom \(A \) we can find a subset \(I = I(A) \) of the spaces of states and a subsequence \(\{s_m\} \) such that

\[\lim_{m \to \infty} P_{s_m,i}(A) = 1, \quad i \in I, \quad (5) \]

but \(P_{s_m,i}(A) < 1 \) if \(i \not\in I \). Obviously, in (2) and (3) we can replace the sequence \(\{t'\} \) by any subsequence \(\{t''\} \), assuming now that \(\{t_k\} \) is a subsequence of \(\{t''\} \). Then for a finite number of a.c. atoms \(A_1, A_2, \ldots, A_k \) we can choose a single sequence \(\{s_m\} \) and a single number \(\alpha \) in (5). Obviously,

\[I(A_1) \cap I(A_2) = \phi. \]

THEOREM 2. There is a sequence \(\{s_m\} \) and a partition of the space of states

\[E = E_1 + E_2 + \ldots + E_j + \ldots + E_k \]

such that each a.c. atom \(A_j, 1 \leq j \leq k, \) almost certainly with respect to any measure \(P_{Si} \) coincides with the set

\[\bigcup_{m \geq s_i} I(A_j) \subseteq E_j. \]